기본 콘텐츠로 건너뛰기

Claude가 제시하는 비즈니스를 위한 프롬프트 엔지니어링 기법 2탄 [Claude AI 로 블로깅하고 책쓰기 -5]

둘째. Few-shot prompting 기법 활용 예시:



프롬프트 엔지니어링은 Claude와 같은 대규모 언어 모델(Large Language Model)을 활용하여 비즈니스 성과를 극대화하기 위한 핵심 기술입니다. 잘 설계된 프롬프트는 모델의 출력 품질을 개선하고, 배포 비용을 절감하며, 고객 경험을 브랜드에 맞게 일관성 있게 제공할 수 있도록 도와줍니다.

최근 많은 기업들이 생성형 AI 모델을 도입하면서, 고품질의 결과를 얻기 위해 효과적인 프롬프트 제작의 중요성이 더욱 강조되고 있습니다. 적절한 프롬프트를 통해 기업은 AI의 잠재력을 최대한 활용하여 다양한 업무의 생산성을 높일 수 있습니다.

효과적인 프롬프트 설계는 결과물의 정확성을 높이고, 품질과 포맷, 관련성, 톤의 일관성을 유지하는 데 도움을 줍니다. 또한 타겟 고객과 산업에 맞춤화된 경험을 제공함으로써 고객 만족도를 향상시킬 수 있습니다. 아울러 불필요한 반복 작업을 최소화하여 비용 절감 효과도 기대할 수 있습니다.

실제로 한 포춘 500대 기업은 Anthropic의 도움을 받아 효과적인 프롬프트 엔지니어링 기법을 활용, Claude 기반의 고객 응대 챗봇을 구축하였습니다. 그 결과 복잡한 고객 문의에 대한 응답의 정확도와 속도를 크게 향상시킬 수 있었다고 합니다.

이처럼 프롬프트 엔지니어링은 대화형 AI의 성능을 결정짓는 중요한 요소로 자리잡고 있습니다. 기업들이 Claude와 같은 강력한 언어 모델을 업무에 활용하고자 할 때는 효과적인 프롬프트 설계에 충분한 시간과 노력을 투자할 필요가 있습니다.

Anthropic에서는 기업들이 보다 쉽게 프롬프트 엔지니어링 기법을 습득하고 적용할 수 있도록 다양한 자료와 가이드라인을 제공하고 있습니다. 특히 'Prompt engineering for business' 백서에서는 비즈니스 관점에서의 프롬프트 엔지니어링 노하우를 상세히 다루고 있습니다.

이 가이드에 따르면, 비즈니스에서 프롬프트 엔지니어링을 효과적으로 활용하기 위한 주요 팁은 크게 3가지로 요약됩니다.

첫째. 단계별 사고(Step by step) 적용입니다. 단계별 사고 기법을 활용하여 문제를 분석하고 해결하는 것은 매우 유용합니다. Claude에게 <thinking> 태그를 사용하여 프롬프트를 제공하면, 모델의 추론 과정을 명시적으로 보여줄 수 있습니다. 이는 답변의 논리성과 신뢰성을 높이는 데 도움이 됩니다.

둘째, Few-shot prompting 기법을 활용하는 것입니다. Claude에게 작업에 대한 간단한 예시를 먼저 보여주고, 유사한 방식으로 원하는 작업을 수행하도록 요청하는 것입니다. 이를 통해 보다 명확하고 일관된 결과물을 얻을 수 있습니다.

셋째, 복잡한 작업은 Prompt chaining을 통해 단계별로 나누어 처리하는 것이 효과적입니다. 각 단계별로 적절한 프롬프트를 제공하고, 이전 단계의 결과물을 토대로 점진적으로 작업을 수행해 나가는 방식입니다.

이러한 프롬프트 엔지니어링 기법들을 잘 활용한다면 Claude의 잠재력을 극대화하여 비즈니스 성과를 한층 높일 수 있을 것입니다. 기업 내 다양한 업무에 Claude를 활용하고자 할 때는 적절한 프롬프트 설계가 무엇보다 중요하다는 점을 기억해야 할 것입니다.


지금부터는 Anthropic 가이드에서 소개한 프롬프트 엔지니어링 팁 중 'Few-shot prompting' 기법에 대해 좀 더 자세히 알아보겠습니다.

Few-shot prompting이란 Claude에게 먼저 간단한 예시를 보여준 뒤, 이와 유사한 방식으로 원하는 작업을 수행하도록 요청하는 것을 말합니다. 이 기법은 다음과 같은 장점을 가지고 있습니다.


둘째. Few-shot prompting 기법 활용 예시:

Few-shot prompting 기법이 필요한 이유는 다음과 같이 설명할 수 있습니다.

1. 적은 양의 예시로 작업 수행 능력 향상

대규모 언어 모델은 방대한 데이터로 사전학습되어 있어, 적은 수의 예시만으로도 주어진 작업을 이해하고 수행할 수 있습니다. Few-shot prompting은 이러한 언어 모델의 특성을 활용하여, 작업에 대한 명시적인 설명 없이도 몇 가지 예시를 통해 작업을 효과적으로 수행할 수 있도록 합니다.

2. 다양한 작업에 빠르게 적용 가능

Few-shot prompting은 각 작업마다 대량의 레이블링된 데이터를 준비할 필요가 없으므로, 다양한 작업에 신속하게 적용할 수 있습니다. 이는 시간과 비용 측면에서 효율적이며, 새로운 작업에 대한 언어 모델의 적응력을 높여줍니다.

3. 유연성과 확장성

Few-shot prompting은 작업에 따라 예시를 유연하게 구성할 수 있습니다. 예시의 수와 내용을 조정하여 언어 모델이 작업을 더 잘 이해하고 수행할 수 있도록 유도할 수 있습니다. 또한, 새로운 작업이 추가되거나 요구 사항이 변경되더라도 빠르게 대응할 수 있어 확장성이 뛰어납니다.

4. 사람의 의도를 반영한 결과 생성

Few-shot prompting에서 제공되는 예시는 사람이 직접 선택하고 구성합니다. 이를 통해 언어 모델이 사람의 의도를 더 잘 파악하고, 해당 의도에 맞는 결과를 생성할 수 있습니다. 이는 작업 수행의 정확도와 품질을 향상시키는 데 도움이 됩니다.

5. 미세 조정의 대안

Few-shot prompting은 언어 모델을 특정 작업에 맞게 미세 조정(fine-tuning)하는 대안이 될 수 있습니다. 미세 조정은 레이블링된 데이터를 대량으로 필요로 하며, 계산 비용과 시간이 많이 소요됩니다. 반면, few-shot prompting은 적은 예시로도 효과적인 작업 수행이 가능하므로, 미세 조정의 필요성을 줄일 수 있습니다.

이러한 이유로 few-shot prompting 기법은 대규모 언어 모델의 활용도를 높이고, 다양한 작업에 빠르고 유연하게 적용할 수 있는 효과적인 프롬프트 엔지니어링 방법론으로 자리잡고 있습니다. 이는 자연어 처리와 관련된 작업에서 활발히 연구되고 있는 분야이기도 합니다.

비즈니스에서 활용 가능한 몇가지 예시를 들어 보겠습니다.

프롬프트: "당신은 전문 개인정보 편집자입니다. 제가 제공하는 텍스트에서 모든 개인 식별 정보를 제거하고 'XXX'로 대체해주세요. 이름, 전화번호, 주소, 이메일 주소 등의 개인정보를 'XXX'로 대체하는 것이 매우 중요합니다. 다음은 이를 수행하는 방법에 대한 두 가지 가상의 예시입니다: ..."

설명: 이 프롬프트는 few-shot 예시를 통해 모델이 개인정보를 식별하고 편집하는 방법을 학습할 수 있도록 합니다. 일반적인 사례뿐만 아니라 까다로운 예시와 극단적인 케이스를 포함함으로써, 모델이 다양한 상황에서 일관되고 정확하게 개인정보를 처리할 수 있도록 돕습니다.

Few-shot prompting 기법은 모델에게 입력값과 이상적인 출력값의 구체적인 예시를 제공하여, 모델이 과제를 올바르게 이해하고 수행할 수 있도록 도와주는 방법입니다. 이를 위해서는 간단하고 일반적인 사례뿐만 아니라, 까다롭고 극단적인 경우의 예시도 포함하는 것이 좋습니다.

아래는 few-shot prompting 기법을 활용한 보다 구체적인 예시입니다:

프롬프트:

"당신은 전문 개인정보 편집자입니다. 제가 제공하는 텍스트에서 모든 개인 식별 정보를 제거하고 'XXX'로 대체해주세요. 이름, 전화번호, 주소, 이메일 주소 등의 개인정보를 'XXX'로 대체하는 것이 매우 중요합니다.

다음은 이를 수행하는 방법에 대한 네 가지 예시입니다:

<examples>

<example>

<text> 안녕하세요, 제 이름은 김민수이고 서울에 살고 있습니다. 제 전화번호는 010-1234-5678이에요.

</text>

<respone>안녕하세요, 제 이름은 XXX이고 XXX에 살고 있습니다. 제 전화번호는 XXX-XXXX-XXXX이에요.

</response>

</example>

<example>

<text> John Doe(john.doe@example.com)의 주소는 123 Main St, Anytown, USA 입니다.</text>

<response>

            XXX(XXX@XXX.XXX)의 주소는 XXX XXX XX, XXX, XXX 입니다.

        </response>

</example>

<example>

<text> 제 주민등록번호는 990101-1234567이고, 신용카드 번호는 1234-5678-9012-3456입니다. </text>

<response> 제 주민등록번호는 XXXXXX-XXXXXXX이고, 신용카드 번호는 XXXX-XXXX-XXXX-XXXX입니다.

</response>

</example>

</examples>

이와 같이 몇가지 예시를 입력한 후 아래 텍스트를 입력하면 Claude 는 앞 예시에서 학습한 내용을 기반으로 아래와 같이 텍스트를 수정한 결과를 추력할 것입니다.

프롬프트:

<text> Jane에게 전화하려면 +1-555-987-6543으로 연락하세요. 그녀의 이메일은 jane_smith@example.co.kr입니다.

</text>

Claude 응답 :

XXX에게 전화하려면 XX-XXX-XXX-XXXX으로 연락하세요. 그녀의 이메일은 XXX@XXX.XX.XX입니다.

few-shot 예시를 통해 모델은 다양한 유형의 개인정보(이름, 전화번호, 이메일, 주소, 주민등록번호, 신용카드 번호 등)를 식별하고 'XXX'로 대체하는 방법을 학습할 수 있습니다. 또한 한글과 영어, 일반적인 사례와 복잡한 사례 등 다양한 상황에 대한 예시를 제공함으로써, 모델이 일관되고 정확하게 개인정보를 처리할 수 있도록 도와줍니다.

업무에서 Few-shot 프롬프팅을 활용할 수 있는 다른 예시를 들어 보겠습니다. 이메일 작성을 위한 예시입니다.  

단계1

프롬프트:

<examples>

<example>

<text>

김 대리는 프로젝트 진행 상황을 박 부장님께 이메일로 보고해야 합니다. 프로젝트는 현재 일정대로 순조롭게 진행 중이며, 다음 주에 중간 보고 회의가 예정되어 있습니다.

</text>

<response>

박 부장님,

ABC 프로젝트 진행 상황을 알려 드립니다.

현재 프로젝트는 계획된 일정에 맞춰 순조롭게 진행되고 있습니다. 각 팀원들이 맡은 업무를 차질 없이 수행하고 있으며, 현재까지 특이 사항은 없습니다.

다음 주 월요일에 프로젝트 중간 보고 회의가 예정되어 있습니다. 회의에서는 그간의 진행 상황을 공유하고, 후반기 계획을 점검할 예정입니다.

프로젝트가 성공적으로 마무리될 수 있도록 팀원 모두 최선을 다하겠습니다. 감사합니다.

김 대리 드림

</response>

</example>

<example>

<text>

이 과장은 고객사에 제안서를 발송했으나 1주일이 지나도록 답변이 없어 상황을 확인하고자 합니다. 고객사의 담당자는 최 부장입니다.

</text>

<response>

최 부장님,

지난 주 발송해 드린 ABC 프로젝트 제안서 검토 진행 상황을 확인하고자 연락 드립니다.

제안서에 대한 귀사의 의견을 듣고 싶습니다. 제안 내용에 대해 의문점이나 추가 논의가 필요한 부분이 있다면 언제든 말씀해 주시기 바랍니다. 필요하시다면 직접 방문 or 화상 미팅을 통해 제안 내용을 보다 상세히 설명 드리겠습니다.

귀사의 프로젝트에 도움이 될 수 있길 희망하며, 긍정적인 회신을 기다리겠습니다. 바쁘신 중에도 검토해 주셔서 감사합니다.  

이 과장 드림

</respone>

</example>

</examples>

이와 같이 몇가지 예시를 들어서 사전에 학습을 시킨 후 프롬프트에 아래 텍스트를 입력하면

Claude는 앞서서 학습시킨 톤으로 이메일 메시지를 생성합니다. “

단계2:

프롬프트:

<text>

홍 대리는 내부 직원들에게 다음 주 예정된 워크숍 일정을 공지해야 합니다. 워크숍은 '효과적인 커뮤니케이션 기술'을 주제로 진행되며, 전 직원이 참석해야 합니다.

</text>

Claude 응답 :

친애하는 임직원 여러분,

다음 주에 진행될 워크숍 일정을 안내해 드립니다.

워크숍 주제: "효과적인 커뮤니케이션 기술"

일시: 2024년 3월 26일 (화) 09:00 ~ 18:00

장소: 본사 대회의실 (B1)

대상: 전 직원 필수 참석

이번 워크숍에서는 업무 상황에서의 효과적인 의사소통 방법과 대인관계 기술을 학습하게 될 것입니다. 원활한 커뮤니케이션은 업무 효율성 제고와 조직 내 협력을 위해 필수적인 요소입니다.

전문 강사님을 모시고 '경청의 자세', '상대방 입장 이해하기', '명확한 의사 전달하기' 등의 주제로 강의가 진행될 예정이오니 많은 관심과 참여 부탁드립니다. 워크숍이 여러분의 커뮤니케이션 능력 향상에 도움이 되길 바랍니다.

참석 여부를 3월 22일(금)까지 회신 부탁드립니다. 궁금하신 점이 있으시면 언제든 제게 연락 주시기 바랍니다. 감사합니다.

홍 대리 드림

위의 예시를 참고하여 홍 대리가 보내야 할 이메일을 작성해 보세요. 업무 상황에 맞는 적절한 어투와 정보를 포함하도록 해야 합니다.

이처럼 Few-shot 프롬프팅은 이메일, 보고서, 제안서 등 다양한 업무 문서 작성에 활용될 수 있습니다. 상황과 목적에 맞는 예시를 제시함으로써 AI 모델이 원하는 스타일과 내용의 문서를 생성하도록 유도할 수 있습니다.

-------------------------------------------------------

다음 포스팅에서 셋째. Prompt chaining 기법 활용에 대한 자세한 내용을 자세히 다루도룩 하겠습니다.


Claude 정보 패이스북 그룹


댓글

이 블로그의 인기 게시물

[알아두면 쓸모 있는 구글 문서 팁] 문서 공유시- 사용자 이름 대신에 익명의 동물이 표시 되는 이유와 동물 종류

구글 드라이브에는 다른 유사 서비스에서는 제공하지 않는 구글 만의 유니크한 기능들이 있다 구글 문서를  불특정 다수에게 전체 공개로 공유할 수 있습니다. 불특정인이 구글 문서에 접속한 경우 익명의 동물로 표시됩니다.  ' 웹에 공개' 또는 '링크가 있는 사용자' 공유 설정을 선택하면 인식할 수 없는 이름이나 익명의 동물이 표시될 수 있습니다. 파일에서 인식할 수 없는 이름을 볼 수 있는 몇 가지 이유는 다음과 같습니다. 메일링 리스트와 파일을 공유합니다. Google 계정이 없는 사용자와 파일을 공유하며, 그 사용자가 다른 사용자에게 공유 초대를 전달했습니다. 내 파일을 수정할 수 있는 누군가가 파일을 다른 사용자와 공유했습니다. 다른 사용자가 자신의 Google 계정 이름을 변경했습니다. 공유 설정 페이지에서 해당 사용자 이름 위로 마우스를 이동하여 이메일 주소를 확인하세요. 익명의 동물 다른 사용자에게 개별적으로 보기 또는 수정 권한을 부여하거나 메일링 리스트에 속해 있는 경우에만 사용자 이름이 표시됩니다. 파일 권한을 '링크가 있는 사용자'로 설정하면 파일을 보고 있는 사용자의 이름이 표시되지 않습니다. 대신 다른 사용자가 익명으로 라벨이 지정되어 표시되고 각 익명 사용자는 다양한 익명의 동물로 나열됩니다. 파일 권한을 '링크가 있는 사용자'로 설정했지만 특정 사용자와 파일을 공유하는 경우 파일을 공유한 사용자의 이름이 표시됩니다. 그 외 다른 사용자가 파일을 볼 때는 익명으로 나타납니다. 비공개 파일의 익명 동물 파일 권한을 '링크가 있는 사용자'로 설정한 다음 이를 '특정 사용자'로 변경하면 다음과 같은 경우 여러 익명의 동물이 표시될 수 있습니다. 누군가 파일을 여러 번 여는 경우에는 익명의 동물 목록에서 오래되고 연결이 끊긴 세션을 강제 종료하는 데 조금 시간이 걸릴 수 있습니다. 누군가 온...

[팁] Google Slide 프리젠테이션시 모든 한글폰트가 '굴림체' 로 바뀌는 현상을 해결한 크롬 확장 프로그램 소개

구글 문서도구인 구글 슬라이드를 이용하여 프리젠테이션을 많이 하는 분들을 위한 희소식 현재 구글 슬라이드에서는 슬라이드 편집시 사용한 고유 한글 폰트들은 프리젠테이션 모드로 전환할 경우는 모두 '굴림체' 로 바뀌어 표시가 되는 불편함이 있었습니다. 예). 슬라이드 편집에서 사용한 '궁서체' 한글 폰트는, 프리젠테이션 모드에서는 '굴림체'로 바뀌어 디스플레이됨 예). 슬라이드 편집 모드 - '궁서체' 폰트 사용 프리젠테이션 모드에서 '굴림체' 로 변경됨    따라서, 이러한 현상을 해결하는 크롬 확장 프로그램이 개발 되었습니다.  크롬 확장 프로그램 명 - ShowAsis 입니다. 크 롬 웹스토어 링크 -  https://goo.gl/PVPkZz 이 확장 프로그램을 사용하여 슬라이드 프리젠테이션을 하면, 편집 모드의 폰트 그대로 프리젠테이션시에도 그대로 한글 폰트로 디스플레이 됩니다. 단, 단점은 슬라이드가 애니메이션 슬라이드가 있는 경우는 애니메이션이 동작하지 않습니다. ----------------------- G Suite/Google Apps 전문 블로그 -  charlychoi.blogspot.kr 도서 '기업과 학교를 위한 구글크롬북'

[Claude의 새로운 'Styles' 기능 소개: AI 글쓰기의 새로운 지평]

  Claude의 새로운 'Styles' 기능 소개: AI 글쓰기의 새로운 지평 오늘은 Anthropic의 AI 어시스턴트 Claude의 차별화된 글쓰기 능력과 새롭게 추가된 'Styles' 기능에 대해 심층적으로 살펴보고자 합니다. Claude의 차별화된 글쓰기 능력 Claude는 출시 초기부터 뛰어난 자연어 처리 능력과 함께, 특히 글쓰기 분야에서 독보적인 성능을 보여왔습니다. 다른 생성형 AI들이 단순 텍스트 생성에 중점을 둔 것과 달리, Claude는 맥락 이해, 논리적 구조화, 그리고 일관된 톤 유지 능력에서 탁월한 성과를 보여주었습니다. 이러한 Claude의 강점이 이번 'Styles' 기능을 통해 한층 더 강화되었습니다. Styles 기능이란? Styles는 Claude의 커뮤니케이션 방식을 사용자의 필요에 맞게 최적화할 수 있는 혁신적인 기능입니다. 이는 단순한 톤 조절을 넘어서, AI와의 상호작용을 보다 자연스럽고 효율적으로 만들어주는 중요한 발전이라고 할 수 있습니다. 사용자 경험의 혁신 S tyles 기능의 도입은 사용자들에게 다음과 같은 긍정적인 영향을 미치고 있습니다: 업무 효율성 향상 : 상황에 맞는 최적의 커뮤니케이션 스타일을 선택함으로써, 불필요한 수정 작업 감소 일관성 유지 : 팀 프로젝트에서 동일한 톤과 스타일의 문서 생성 가능 맞춤형 학습 경험 : 사용자의 학습 스타일에 맞춘 설명 방식 제공 시간 절약 : 스타일 설정 한 번으로 일관된 output 유지 주요 기능 및 활용 방법 1. 프리셋 스타일 Normal: 기본적인 응답 스타일 Concise: 간단명료한 응답 Formal: 전문적이고 정제된 응답 Explanatory: 교육적 목적에 최적화된 상세 설명 2. 커스텀 스타일 생성 샘플 문서 업로드 방식 PDF, DOC, TXT 등 다양한 형식 지원 AI가 문서를 분석하여 사용자의 선호 스타일 학습 직접 스타일 정의 방식 기본 템플릿 선택 후 커스터마이징 세부적인 커뮤니케이션 지침 설...

[Genspark - 세계 최초의 에이전트 혼합(MoA) 시스템 출시] AI 채팅, 이미지 생성, 번역의 혁신적인 경험!

  세계 최초의 에이전트 혼합(MoA) 시스템 출시 "지난 몇 달간 이것은 제가 사용하던 ChatGPT를 완전히 대체했습니다." — Genspark MoA 얼리 액세스 사용자 AI의 품질, 안정성, 신뢰성에 있어 획기적인 진전을 알려드리게 되어 기쁩니다. Genspark 에이전트 혼합(MoA)은 세계 최초의 상용화된 MoA 시스템으로, 다수의 대규모 언어 모델, 이미지 생성 모델, 번역 도구의 기능을 통합하여 채팅, 이미지, 번역 작업에서 뛰어난 정확도와 신뢰성을 제공합니다. MoA는 여러 AI 모델의 전문성을 결합한 혁신적인 접근 방식으로, 각 모델의 고유한 강점을 활용하여 개별 모델이 혼자서는 달성할 수 없는 탁월한 결과를 만들어냅니다. MoA만의 특별한 점 기존의 단일 모델 AI 시스템과 달리, MoA는 각 작업에 특화된 여러 고급 모델의 응답을 종합하고 개선합니다. 이러한 모델들의 집단 지성을 활용함으로써, MoA는 더욱 정확하고 섬세하며 신뢰할 수 있는 응답을 제공하여, 단일 모델로는 불가능한 수준의 AI 경험을 사용자에게 제공합니다. MoA의 작동 원리 집단 지성: 각 모델이 전문화된 응답을 제공하여 정보의 다양성을 높이고 작업에 최적화된 고유한 관점을 제시합니다.  성찰과 개선: MoA는 다양한 응답을 분석하고 신중하게 통합하며, 핵심 일관성을 파악하여 각 모델의 강점을 살린 결과물을 도출합니다.  신뢰성 있는 출력: 최종 응답은 여러 모델의 통찰력을 진정으로 통합한 것으로, 세련되고 일관성 있으며 깊이 있는 신뢰할 수 있는 품질을 보장합니다. 다양한 응용 분야에서의 신뢰성 확장 채팅: MoA는 여러 언어 모델의 응답을 결합하여 채팅 경험을 향상시킵니다. 각 모델의 기여를 세심하게 분석하여 균형 잡히고 정확한 답변을 제공합니다. 이러한 분석 과정을 통해 모든 응답이 정확성, 맥락, 깊이 면에서 균형을 이루도록 보장합니다. 이미지 생성: 사용자의 요청이 여러 이미지 생성 모델에 전달되어 다양한 결과물이 생성됩니다. 사용자가 ...

구글 드라이브에서 내 파일이 갑자기 사라졌어요 [알아두면 쓸모 있는 구글 드라이브 팁]

  구글 드라이브에서 고아가 된(정리 되지 않은)  파일들에 대한 현상 및 복원 방법 및 공유 드라이브 활용 목차  배경 내 파일이나 폴더가 사라지고 (삭제된 것은 아님) 찾을 수 없는 현상 고아가 된 파일 (정리가 안된 파일) 을 찾아 내고 복원하는  방법 고아가 된 과정을 추적하는 방법 배경   구글 드라이브의 내 드라이브에서 협업을 위한 협업 폴더를 생성한 후 다른 팀원간들간에 공유하여 작업하는 동안 예기치 못하게 내가 생성한 파일들 또는 폴더가 갑자기 사라지는 현상이 발생 할 수 있습니다. 또한 이를 경험한 사용자들이 많이 있습니다.  내가 파일이나 폴더를 삭제하지 않았는데 불구하고 휴지통에도 없고, 내가 삭제한 기억도 없고, 이러한 현상이 발생할 경우에는 본 벡서서에서 설명하는 해당 폴더나 파일들이 ‘고아 (Orphaned)’ 가 된 상태가 되어있는게 분명합니다.  한글 도움말에는 ‘정리가 되지 않은 파일 (또는 분리가 된 파일)' 이라고 설명되어 있기도 합니다. 고아가 된 파일들은 어떠한 폴더에도 속하여 있지 않고, 내 휴지통에도 존재하지 않는 현상입니다. 그러나, 구글 드라이브에서는 용량을 계속 차지 않고 있는 상태입니다. 간혹 왜? 내가 삭제한 적이 없는데 파일이 없어졌거나 폴더가 보이질 않는 경우 당황하지 않고 이문서를 자세히 참조하면 해답을 찾을 수 있습니다.   내 파일이나 폴더가 사라지고 (삭제된 것은 아님) 찾을 수 없는 현상      1. 내 드라이브에서 Folder A를 생성하고 Folder A 안에 File A 를 생성 합니다. 나중에 File A를 삭제 하고, 그 이후에 Folder A 까지 삭제를 할 수 있습니다. 그후 휴지통에서 File A만 복원을 할 경우 삭제된 File A 를 복원하려고 하는데 File A가 존재하였던 상위 폴더 ‘Folder A’는 이미 삭제된 상태입니다. 이럴때 File A는 ...