기본 콘텐츠로 건너뛰기

[2024 AI 지수 보고서]

 2024 AI 지수 보고서


이 보고서는 스탠포드 대학교 인간 중심 인공지능 연구소(HAI)에서 발표한 2024년 AI 지수 보고서입니다. 인공지능(AI) 분야의 현재 동향과 미래 전망을 제시하는 종합적인 보고서입니다. 정책 입안자, 연구원, 경영진, 언론인 및 일반 대중에게 AI 분야에 대한 균형 잡히고 엄격하게 검증된 데이터를 제공하여 AI에 대한 더욱 심층적인 이해를 돕는 것을 목표로 합니다.

이 보고서는 AI 기술 발전, AI에 대한 대중의 인식, AI 개발을 둘러싼 지정학적 역학 관계 등 광범위한 주제를 다루고 있습니다. 특히, 2023년 AI 분야의 급속한 발전과 함께 사회에 미치는 영향력이 그 어느 때보다 커지고 있다는 점을 강조합니다.

https://aiindex.stanford.edu/report/ 이 사이트에서 아래와 같이 보고서, 챕터별, 보고서에 포함된 차트와 데이터를 별도의 파일들로 제공됩니다.  

주요 내용은 다음과 같습니다.

  • AI는 특정 작업에서 인간을 능가하지만 모든 작업에서 그런 것은 아니다. 이미지 분류, 시각적 추론, 영어 이해와 같은 몇 가지 벤치마크에서 인간의 능력을 뛰어넘었지만, 경쟁 수준의 수학, 시각적 상식 추론 및 계획과 같은 더 복잡한 작업에서는 여전히 인간에 뒤처져 있습니다.

  • 업계는 최첨단 AI 연구를 지배하고 있다. 2023년에 업계에서는 51개의 주목할 만한 머신 러닝 모델을 생산한 반면 학계는 15개만 기여했습니다. 2023년에는 산업-학계 협력으로 21개의 주목할 만한 모델이 탄생하여 새로운 최고치를 기록했습니다.

  • 미국은 최고의 AI 모델의 주요 공급원으로서 중국, EU, 영국을 이끌고 있다. 2023년에는 미국 기관에서 61개의 주목할 만한 AI 모델이 개발되었으며, 이는 유럽 연합(21개)과 중국(15개)을 훨씬 능가하는 수치입니다.

  • 생성형 AI 투자가 급증했다. 작년 전체 AI 민간 투자는 감소했지만 생성형 AI 자금 지원은 2022년에서 2023년까지 거의 8배 증가한 252억 달러에 달했습니다. OpenAI, Anthropic, Hugging Face, Inflection 등 생성형 AI 분야의 주요 기업들이 상당한 자금 조달 라운드를 발표했습니다.

  • 데이터에 따르면 AI는 직원 생산성을 높이고 더 높은 품질의 작업을 가능하게 한다. 2023년에는 AI가 근로자가 작업을 더 빨리 완료하고 결과물의 품질을 향상시키는 데 도움이 된다는 것을 시사하는 여러 연구에서 AI의 노동에 미치는 영향을 평가했습니다. 이러한 연구는 또한 AI가 저숙련 노동자와 고숙련 노동자 간의 기술 격차를 해소할 수 있는 잠재력을 입증했습니다. 하지만 다른 연구에서는 적절한 감독 없이 AI를 사용하면 성능이 저하될 수 있다고 경고합니다.

  • 미국에서 AI 규제가 급증했다. 지난 5년 동안 미국에서 AI 관련 규제가 크게 증가했습니다. 2023년에는 AI 관련 규제가 25건으로 2016년 1건에 불과했습니다. 작년 한 해에만 AI 관련 규제 총 수가 56.3% 증가했습니다.

  • 전 세계 사람들은 AI의 잠재적 영향을 더 잘 인식하고 있으며 더 불안해하고 있다. Ipsos의 설문 조사에 따르면 지난 1년 동안 향후 3~5년 안에 AI가 자신의 삶에 극적인 영향을 미칠 것이라고 생각하는 사람들의 비율이 60%에서 66%로 증가했습니다. 또한 52%는 AI 제품 및 서비스에 대해 불안감을 나타내며 2022년보다 13% 증가했습니다. 미국에서는 Pew 데이터에 따르면 미국인의 52%가 AI에 대해 흥분하기보다는 걱정된다고 답했으며, 이는 2022년 38%에서 증가한 수치입니다.

보고서는 또한 책임 있는 AI 개발, AI 시스템의 투명성 및 설명 가능성, AI 시스템의 보안 및 안전, AI의 공정성과 같은 주제를 다룹니다. 또한 AI가 선거 및 정치 프로세스에 미치는 영향에 대한 특별 섹션도 포함되어 있습니다.

1장: 연구 개발

  • 업계 주도: AI 연구는 학계에서 업계로 이동하고 있으며, 2023년에는 업계에서 51개의 주목할만한 모델을 생산한 반면 학계에서는 15개만 생산했습니다.

  • 파운데이션 모델: 2023년에는 149개의 파운데이션 모델이 출시되었으며, 이는 2022년에 비해 두 배 이상 증가한 수치입니다.

  • 증가하는 비용: 최첨단 AI 모델 교육 비용이 증가하여 OpenAI의 GPT-4는 약 7,800만 달러, Google의 Gemini Ultra는 1억 9,100만 달러가 소요되었습니다.

  • 미국 선두: 미국은 61개의 주목할만한 AI 모델로 AI 연구를 주도하고 있으며, 유럽 연합(21개)과 중국(15개)을 능가합니다.

  • 특허 및 출판: AI 특허는 급증했으며 중국이 이를 주도하고 있습니다. AI 관련 출판물도 계속 증가하고 있습니다.

  • 오픈 소스: GitHub의 오픈 소스 AI 프로젝트가 급증하여 2023년에는 약 180만 개에 달했습니다.

2장: 기술 성능

  • 벤치마킹: AI는 이미지 분류 및 언어 이해와 같은 특정 벤치마크에서 인간을 능가하지만, 고급 수학 및 시각적 상식 추론과 같은 더 복잡한 작업에서는 여전히 어려움을 겪고 있습니다.

  • 멀티모달 AI: Google의 Gemini 및 OpenAI의 GPT-4와 같은 새로운 멀티모달 모델은 이미지, 텍스트 및 오디오를 처리할 수 있습니다.

  • 새로운 벤치마크: 코딩, 추론 및 에이전트 기반 동작을 위한 새로운 벤치마크가 등장했습니다.

  • AI 기반 데이터 생성: Segment Anything 및 Skoltech와 같은 AI 모델은 이미지 분할 및 3D 재구성을 위한 데이터를 생성하는 데 사용되어 AI 기능을 더욱 향상시킵니다.

  • 인간 평가: 챗봇 아레나 리더보드와 같은 인간 평가는 AI 진행 상황을 추적하는 데 점점 더 중요해지고 있습니다.

  • 로봇 공학 발전: PaLM-E 및 RT-2와 같은 언어 모델은 로봇 시스템을 보다 유연하게 만들었습니다.

  • 에이전트 AI: AI 에이전트는 Minecraft와 같은 복잡한 게임을 마스터하고 온라인 쇼핑 및 연구 지원과 같은 실제 작업을 수행할 수 있습니다.

  • 폐쇄형 대 오픈형 LLM: 폐쇄형 LLM은 일반적으로 오픈 소스 모델보다 성능이 뛰어납니다.

3장: 책임 있는 AI

  • 표준화 부족: 책임 있는 AI 보고에는 표준화가 부족하며, 주요 개발자들은 서로 다른 벤치마크를 사용하여 모델을 테스트합니다.

  • 정치적 딥페이크: 정치적 딥페이크는 생성하기 쉽고 탐지하기 어려워 선거에 영향을 미칠 수 있습니다.

  • LLM의 취약성: 연구자들은 무작위 단어를 무한 반복하도록 요청하는 것과 같이 덜 명확한 전략을 통해 LLM의 유해한 행동을 이끌어낼 수 있음을 발견했습니다.

  • 비즈니스 위험: 기업들은 개인 정보 보호, 데이터 보안 및 안정성과 같은 AI 관련 위험에 대해 우려하고 있습니다.

  • 저작권 문제: LLM은 저작권이 있는 자료를 출력할 수 있어 법적 문제를 제기합니다.

  • 투명성 부족: AI 개발자는 특히 교육 데이터 및 방법론 공개와 관련하여 투명성이 부족합니다.

  • AI 위험 분석: 알고리즘 차별과 같은 즉각적인 모델 위험과 잠재적인 장기적 실존적 위협에 초점을 맞추는 것 사이에 상당한 논쟁이 있습니다.

  • AI 사고 증가: AI 오용 관련 사건 수가 계속 증가하고 있습니다.

  • ChatGPT의 편향성: ChatGPT는 미국 민주당과 영국 노동당에 대한 편향성을 보여줍니다.

4장: 경제

  • 생성형 AI 투자: 전체 AI 민간 투자는 감소했지만 생성형 AI 투자는 급증하여 252억 달러에 달했습니다.

  • 미국 선두: 미국은 AI 민간 투자에서 672억 달러로 다른 국가를 훨씬 앞서고 있습니다.

  • AI 일자리 감소: 미국과 전 세계적으로 AI 관련 채용 공고가 줄어들고 있습니다.

  • AI의 영향: AI는 비용을 절감하고 수익을 증가시키며 생산성을 향상시키지만, 과도하게 의존하면 작업자의 성능이 저하될 수 있습니다.

  • Fortune 500: Fortune 500대 기업들은 특히 생성형 AI에 대해 AI를 더 많이 언급하기 시작했습니다.

  • 로봇 설치: 중국은 산업용 로봇 설치를 지배하고 있으며 서비스 로봇 설치도 증가하고 있습니다.

5장: 과학 및 의학

  • 과학 발전: AlphaDev(알고리즘 정렬 개선) 및 GNoME(재료 발견 촉진)와 같은 AI 기반 애플리케이션은 과학적 발견을 가속화합니다.

  • 의학 발전: EVEscape(팬데믹 예측 개선) 및 AlphaMissence(AI 기반 돌연변이 분류 지원)와 같은 AI 시스템은 의료 발전에 기여하고 있습니다.

  • 의료 지식: GPT-4 Medprompt와 같은 AI 시스템은 MedQA 벤치마크에서 높은 정확도를 달성하여 임상 지식을 시연했습니다.

  • FDA 승인: FDA 승인을 받은 AI 관련 의료 기기의 수가 증가하고 있습니다.

6장: 교육

  • 고등 교육: 미국 및 캐나다의 CS 학사 졸업생 수는 계속 증가하고 있지만 석사 및 박사 졸업생 수는 정체되거나 감소하고 있습니다. AI 박사 학위 취득자들이 학계보다 업계로 몰리는 현상은 계속되고 있습니다.

  • 국제화 감소: 미국 및 캐나다의 CS 교육은 덜 국제화되고 있으며, 유학생 졸업생 비율이 감소하고 있습니다.

  • K-12 교육: 미국에서는 더 많은 고등학생들이 CS 과정을 듣고 있지만 접근성 문제는 여전히 남아 있습니다.

  • AI 관련 프로그램: 전 세계적으로 AI 관련 학위 프로그램이 증가하고 있습니다.

  • 유럽: 영국과 독일은 유럽 정보학, CS, CE 및 IT 졸업생 배출을 주도하고 있습니다. 핀란드는 1인당 학사 및 박사 졸업생 배출에서 선두를 달리고 있으며 아일랜드는 1인당 석사 졸업생 배출에서 선두를 달리고 있습니다.

7장: 정책 및 거버넌스

  • 미국 규제 증가: 미국에서 AI 관련 규제가 급증했습니다.

  • 랜드마크 정책: 미국과 유럽연합은 AI 규제에 대한 중요한 제안을 내놓았습니다.

  • 입법 관심: AI는 미국 정책 입안자들의 관심을 사로잡았고 전 세계적으로 입법 절차에서 AI에 대한 언급이 증가했습니다.

  • 규제 기관: 미국과 유럽 연합의 더 많은 규제 기관이 AI에 주목하고 있습니다.

  • 미국 공공 투자: 미국 연방 정부의 AI 연구 개발 예산과 AI 관련 계약 지출이 증가했습니다.

8장: 다양성

  • 미국 및 캐나다: 미국 및 캐나다의 학사, 석사 및 박사 CS 학생들은 인종적으로 더욱 다양해지고 있습니다.

  • 유럽의 성별 격차: 유럽 정보학, CS, CE 및 IT 졸업생의 모든 교육 수준에서 상당한 성별 격차가 지속

9장: 여론

  • AI에 대한 인식 증가: Ipsos의 설문조사에 따르면 AI가 향후 3~5년 안에 삶에 큰 영향을 미칠 것이라고 생각하는 사람들의 비율이 60%에서 66%로 증가했습니다. 하지만 AI 제품 및 서비스에 대한 불안감도 커지고 있으며, 52%가 불안감을 표출했습니다. 미국에서도 Pew Research Center의 데이터에 따르면 2023년에는 AI에 대해 우려하는 사람들이 더 많아졌습니다.

  • 서구 국가의 AI 정서: 독일, 네덜란드, 호주 등 서구 국가들은 여전히 AI에 대해 긍정적이지는 않지만, AI의 이점을 인정하는 응답자의 비율이 증가하면서 점차 개선되고 있습니다.

  • AI의 경제적 영향에 대한 비관론: Ipsos 설문조사 응답자의 37%만이 AI가 자신의 직업을 향상시킬 것이라고 생각하며, 경제 및 일자리 시장에 미치는 영향에 대해서도 비관적인 견해를 보였습니다.

  • AI 낙관론의 인구통계학적 차이: 젊은 세대, 고소득층, 고학력층이 AI의 긍정적인 영향에 대해 더 낙관적인 반면, 베이비붐 세대, 저소득층, 저학력층은 덜 낙관적입니다.

  • ChatGPT의 인지도 및 사용: 토론토 대학의 국제 설문 조사에 따르면 응답자의 63%가 ChatGPT를 알고 있으며, 그중 절반은 ChatGPT를 최소 주 1회 사용한다고 답했습니다.

  • AI 모델에 대한 소셜 미디어 논의: Quid의 데이터 분석에 따르면 GPT-4는 2023년 내내 소셜 미디어 대화에서 지배적인 주제였습니다. Stable Diffusion에 대한 논의는 연초에 더 많았지만 연말에는 감소했습니다. Gemini와 Grok은 4분기에 출시되어 대화량이 증가했습니다.

참고: 위 내용은 Gemini Advanced (Gemini 1.5 Pro) 에 의해서 요약된 내용입니다.


---------------

강연/교육 요청:

생성형AI (ChatGPT, Claude AI, Perpelexity AI, Genspark AI) 비즈니스 활용, 글쓰기 

연락처:hsikchoi@gmail.com, T:010-8408-2363


댓글

이 블로그의 인기 게시물

[알아두면 쓸모 있는 구글 문서 팁] 문서 공유시- 사용자 이름 대신에 익명의 동물이 표시 되는 이유와 동물 종류

구글 드라이브에는 다른 유사 서비스에서는 제공하지 않는 구글 만의 유니크한 기능들이 있다 구글 문서를  불특정 다수에게 전체 공개로 공유할 수 있습니다. 불특정인이 구글 문서에 접속한 경우 익명의 동물로 표시됩니다.  ' 웹에 공개' 또는 '링크가 있는 사용자' 공유 설정을 선택하면 인식할 수 없는 이름이나 익명의 동물이 표시될 수 있습니다. 파일에서 인식할 수 없는 이름을 볼 수 있는 몇 가지 이유는 다음과 같습니다. 메일링 리스트와 파일을 공유합니다. Google 계정이 없는 사용자와 파일을 공유하며, 그 사용자가 다른 사용자에게 공유 초대를 전달했습니다. 내 파일을 수정할 수 있는 누군가가 파일을 다른 사용자와 공유했습니다. 다른 사용자가 자신의 Google 계정 이름을 변경했습니다. 공유 설정 페이지에서 해당 사용자 이름 위로 마우스를 이동하여 이메일 주소를 확인하세요. 익명의 동물 다른 사용자에게 개별적으로 보기 또는 수정 권한을 부여하거나 메일링 리스트에 속해 있는 경우에만 사용자 이름이 표시됩니다. 파일 권한을 '링크가 있는 사용자'로 설정하면 파일을 보고 있는 사용자의 이름이 표시되지 않습니다. 대신 다른 사용자가 익명으로 라벨이 지정되어 표시되고 각 익명 사용자는 다양한 익명의 동물로 나열됩니다. 파일 권한을 '링크가 있는 사용자'로 설정했지만 특정 사용자와 파일을 공유하는 경우 파일을 공유한 사용자의 이름이 표시됩니다. 그 외 다른 사용자가 파일을 볼 때는 익명으로 나타납니다. 비공개 파일의 익명 동물 파일 권한을 '링크가 있는 사용자'로 설정한 다음 이를 '특정 사용자'로 변경하면 다음과 같은 경우 여러 익명의 동물이 표시될 수 있습니다. 누군가 파일을 여러 번 여는 경우에는 익명의 동물 목록에서 오래되고 연결이 끊긴 세션을 강제 종료하는 데 조금 시간이 걸릴 수 있습니다. 누군가 온...

[팁] Google Slide 프리젠테이션시 모든 한글폰트가 '굴림체' 로 바뀌는 현상을 해결한 크롬 확장 프로그램 소개

구글 문서도구인 구글 슬라이드를 이용하여 프리젠테이션을 많이 하는 분들을 위한 희소식 현재 구글 슬라이드에서는 슬라이드 편집시 사용한 고유 한글 폰트들은 프리젠테이션 모드로 전환할 경우는 모두 '굴림체' 로 바뀌어 표시가 되는 불편함이 있었습니다. 예). 슬라이드 편집에서 사용한 '궁서체' 한글 폰트는, 프리젠테이션 모드에서는 '굴림체'로 바뀌어 디스플레이됨 예). 슬라이드 편집 모드 - '궁서체' 폰트 사용 프리젠테이션 모드에서 '굴림체' 로 변경됨    따라서, 이러한 현상을 해결하는 크롬 확장 프로그램이 개발 되었습니다.  크롬 확장 프로그램 명 - ShowAsis 입니다. 크 롬 웹스토어 링크 -  https://goo.gl/PVPkZz 이 확장 프로그램을 사용하여 슬라이드 프리젠테이션을 하면, 편집 모드의 폰트 그대로 프리젠테이션시에도 그대로 한글 폰트로 디스플레이 됩니다. 단, 단점은 슬라이드가 애니메이션 슬라이드가 있는 경우는 애니메이션이 동작하지 않습니다. ----------------------- G Suite/Google Apps 전문 블로그 -  charlychoi.blogspot.kr 도서 '기업과 학교를 위한 구글크롬북'

[Claude의 새로운 'Styles' 기능 소개: AI 글쓰기의 새로운 지평]

  Claude의 새로운 'Styles' 기능 소개: AI 글쓰기의 새로운 지평 오늘은 Anthropic의 AI 어시스턴트 Claude의 차별화된 글쓰기 능력과 새롭게 추가된 'Styles' 기능에 대해 심층적으로 살펴보고자 합니다. Claude의 차별화된 글쓰기 능력 Claude는 출시 초기부터 뛰어난 자연어 처리 능력과 함께, 특히 글쓰기 분야에서 독보적인 성능을 보여왔습니다. 다른 생성형 AI들이 단순 텍스트 생성에 중점을 둔 것과 달리, Claude는 맥락 이해, 논리적 구조화, 그리고 일관된 톤 유지 능력에서 탁월한 성과를 보여주었습니다. 이러한 Claude의 강점이 이번 'Styles' 기능을 통해 한층 더 강화되었습니다. Styles 기능이란? Styles는 Claude의 커뮤니케이션 방식을 사용자의 필요에 맞게 최적화할 수 있는 혁신적인 기능입니다. 이는 단순한 톤 조절을 넘어서, AI와의 상호작용을 보다 자연스럽고 효율적으로 만들어주는 중요한 발전이라고 할 수 있습니다. 사용자 경험의 혁신 S tyles 기능의 도입은 사용자들에게 다음과 같은 긍정적인 영향을 미치고 있습니다: 업무 효율성 향상 : 상황에 맞는 최적의 커뮤니케이션 스타일을 선택함으로써, 불필요한 수정 작업 감소 일관성 유지 : 팀 프로젝트에서 동일한 톤과 스타일의 문서 생성 가능 맞춤형 학습 경험 : 사용자의 학습 스타일에 맞춘 설명 방식 제공 시간 절약 : 스타일 설정 한 번으로 일관된 output 유지 주요 기능 및 활용 방법 1. 프리셋 스타일 Normal: 기본적인 응답 스타일 Concise: 간단명료한 응답 Formal: 전문적이고 정제된 응답 Explanatory: 교육적 목적에 최적화된 상세 설명 2. 커스텀 스타일 생성 샘플 문서 업로드 방식 PDF, DOC, TXT 등 다양한 형식 지원 AI가 문서를 분석하여 사용자의 선호 스타일 학습 직접 스타일 정의 방식 기본 템플릿 선택 후 커스터마이징 세부적인 커뮤니케이션 지침 설...

[Genspark - 세계 최초의 에이전트 혼합(MoA) 시스템 출시] AI 채팅, 이미지 생성, 번역의 혁신적인 경험!

  세계 최초의 에이전트 혼합(MoA) 시스템 출시 "지난 몇 달간 이것은 제가 사용하던 ChatGPT를 완전히 대체했습니다." — Genspark MoA 얼리 액세스 사용자 AI의 품질, 안정성, 신뢰성에 있어 획기적인 진전을 알려드리게 되어 기쁩니다. Genspark 에이전트 혼합(MoA)은 세계 최초의 상용화된 MoA 시스템으로, 다수의 대규모 언어 모델, 이미지 생성 모델, 번역 도구의 기능을 통합하여 채팅, 이미지, 번역 작업에서 뛰어난 정확도와 신뢰성을 제공합니다. MoA는 여러 AI 모델의 전문성을 결합한 혁신적인 접근 방식으로, 각 모델의 고유한 강점을 활용하여 개별 모델이 혼자서는 달성할 수 없는 탁월한 결과를 만들어냅니다. MoA만의 특별한 점 기존의 단일 모델 AI 시스템과 달리, MoA는 각 작업에 특화된 여러 고급 모델의 응답을 종합하고 개선합니다. 이러한 모델들의 집단 지성을 활용함으로써, MoA는 더욱 정확하고 섬세하며 신뢰할 수 있는 응답을 제공하여, 단일 모델로는 불가능한 수준의 AI 경험을 사용자에게 제공합니다. MoA의 작동 원리 집단 지성: 각 모델이 전문화된 응답을 제공하여 정보의 다양성을 높이고 작업에 최적화된 고유한 관점을 제시합니다.  성찰과 개선: MoA는 다양한 응답을 분석하고 신중하게 통합하며, 핵심 일관성을 파악하여 각 모델의 강점을 살린 결과물을 도출합니다.  신뢰성 있는 출력: 최종 응답은 여러 모델의 통찰력을 진정으로 통합한 것으로, 세련되고 일관성 있으며 깊이 있는 신뢰할 수 있는 품질을 보장합니다. 다양한 응용 분야에서의 신뢰성 확장 채팅: MoA는 여러 언어 모델의 응답을 결합하여 채팅 경험을 향상시킵니다. 각 모델의 기여를 세심하게 분석하여 균형 잡히고 정확한 답변을 제공합니다. 이러한 분석 과정을 통해 모든 응답이 정확성, 맥락, 깊이 면에서 균형을 이루도록 보장합니다. 이미지 생성: 사용자의 요청이 여러 이미지 생성 모델에 전달되어 다양한 결과물이 생성됩니다. 사용자가 ...

구글 드라이브에서 내 파일이 갑자기 사라졌어요 [알아두면 쓸모 있는 구글 드라이브 팁]

  구글 드라이브에서 고아가 된(정리 되지 않은)  파일들에 대한 현상 및 복원 방법 및 공유 드라이브 활용 목차  배경 내 파일이나 폴더가 사라지고 (삭제된 것은 아님) 찾을 수 없는 현상 고아가 된 파일 (정리가 안된 파일) 을 찾아 내고 복원하는  방법 고아가 된 과정을 추적하는 방법 배경   구글 드라이브의 내 드라이브에서 협업을 위한 협업 폴더를 생성한 후 다른 팀원간들간에 공유하여 작업하는 동안 예기치 못하게 내가 생성한 파일들 또는 폴더가 갑자기 사라지는 현상이 발생 할 수 있습니다. 또한 이를 경험한 사용자들이 많이 있습니다.  내가 파일이나 폴더를 삭제하지 않았는데 불구하고 휴지통에도 없고, 내가 삭제한 기억도 없고, 이러한 현상이 발생할 경우에는 본 벡서서에서 설명하는 해당 폴더나 파일들이 ‘고아 (Orphaned)’ 가 된 상태가 되어있는게 분명합니다.  한글 도움말에는 ‘정리가 되지 않은 파일 (또는 분리가 된 파일)' 이라고 설명되어 있기도 합니다. 고아가 된 파일들은 어떠한 폴더에도 속하여 있지 않고, 내 휴지통에도 존재하지 않는 현상입니다. 그러나, 구글 드라이브에서는 용량을 계속 차지 않고 있는 상태입니다. 간혹 왜? 내가 삭제한 적이 없는데 파일이 없어졌거나 폴더가 보이질 않는 경우 당황하지 않고 이문서를 자세히 참조하면 해답을 찾을 수 있습니다.   내 파일이나 폴더가 사라지고 (삭제된 것은 아님) 찾을 수 없는 현상      1. 내 드라이브에서 Folder A를 생성하고 Folder A 안에 File A 를 생성 합니다. 나중에 File A를 삭제 하고, 그 이후에 Folder A 까지 삭제를 할 수 있습니다. 그후 휴지통에서 File A만 복원을 할 경우 삭제된 File A 를 복원하려고 하는데 File A가 존재하였던 상위 폴더 ‘Folder A’는 이미 삭제된 상태입니다. 이럴때 File A는 ...