기본 콘텐츠로 건너뛰기

[알아두면 쓸모있는 구글 드라이브 팁] 머신러닝 기술로 내가 앞으로 할일을 미리 예측 해 줌.


구글은 인공지능 기술에 하나인 머신 러닝에 많은 투자를 하고 있습니다.

많은 협업자들과 협업시 가장 많은 시간을 소모하는 작업중에 하나는 협업자들과 주고 받았던 각종 문서나 파일들 관리일 것입니다. 구글은 이러한 시간 소모성 작업에 머신 러닝 기술을 적용하여 업무의 효율성와 생산성을 높이고 있습니다.

Google Workspace의 구글 드라이브에는 '내 드라이브' 메뉴위에 '우선순위' 메뉴가 있습니다. 이 '우선순위' 의 역할이 정확이 무엇인지 알아보도록 하겠습니다.

Google 드라이브가 내가 드라이브 안에서 문서 작업하는 패턴을 머신 러닝 기술을 이용하여 학습을 하고, 이를 바탕으로 내가 앞으로 어떤 작업을 할 예정인지 미리 예측하여 알려주고 있다는 사실을 알고 계신가요?

Google 드라이브에 접속하면 좌측 상단에 '우선순위' 메뉴가 보일 것입니다. (개인용 무료 드라이브 사용자와 Google Workspace Business Starter 버전은 해당 사항없음) 이 '우선순위' 메뉴가 머신 러닝 기술을 적용하여내가 앞으로 작업할 확률이 높은, 즉 내가 작업할 우선 순위가 높은 문서를 우선적으로 보여주고 있다는 사실을 알고 계셨나요?

예를 들면, 저는 매주 월요일 오전에만 열어서 작업하는 문서가 있습니다. 주간 업무 회의가 월요일 오전10시에 있고, 이때 회의 할 문서입니다. 이 문서는 월요일 오전에만 열어서 10시 회의 하는 동안만 잠깐 사용을 합니다.  

Google 드라이브는 머신 러닝 기술을 적용하여 내 작업 패턴을 분석합니다. 월요일 오전에 출근하여 드라이브에 접속을 하면, '우선 순위' 목록에서 오늘 내가 작업해야 할 문서중에서 가장 순위가 높은 것들을 먼저 보여 줍니다. (아래 캡쳐한 업무용 내 드라이브 이미지 참고). 다음날 화요일이 되면 이 문서는 '우선 순위' 메뉴에서 사라집니다. 

이는 드라이브 안에서 해당 문서를 검색을 할 필요 없이 바로 문서를 확인 하여 작업을 할 수 있습니다. 

Google 드라이브에 적용된 AI 기술이 사용자의 업무 효율을 높이는데 많은 일조를 하고 있습니다.



드라이브의 우선순위 (Priority)가 어떤 역할을 할까요?
기술을 설명하기 전에 우선순위가 무엇인지 다시 한 번 알아 보도록 하겠습니다. 드라이브에는 좌축 상단에 
3개의 메뉴가 있습니다.

1). 우선순위,
2). 내 드라이브
3). 공유 드라이브.
우선순위 페이지는 머신 러닝 기술을 사용하여 사용자가 이용할 가능성이 매우 높은 파일들을 지속적으로 알려줍니다.
Priority in Drive.png
우선순위 페이지는 두 부분으로 구성됩니다.

  1. 우선순위 카드는 페이지 상단에 있습니다. 이 카드는 예측 머신러닝 모델을 통해서 분석된 중요한 내용을 지속적으로 표시합니다. (예 : 다가오는 회의 또는 빈번하게 협업하는 사람들) 드라이브는 작업에 관련되는 문서, 스프레드시트, 프리젠테이션 문서들을 제안합니다. 또한 관련 조치를 제안 할 수 있습니다. 이 두 가지가 어떻게 작동하는지 설명하겠습니다.
  2. 작업 영역은  페이지 하단에 있습니다. 여기에서 드라이브내에 있는 공통적인 주제(예: 견적서)나 팀 구성원과 같은 신호에 따라 주의가 필요할 수 있는 프로젝트에 대한 파일 모음 (클러스터)을 제안합니다. 시간이 지날수록 드라이브는 기존 작업 공간에 추가할 수 있는 새로운 작업 공간 제안 및/또는 플래그 파일을 제공하여 작업 공간을 새로 유지할 수 있도록 합니다.

먼저, 드라이브가 어떤 파일을 사용자에게 제공할 것인지 어떻게 알 수 있습니까?


우선순위는 각각 고유한 목적을 가진 여러 가지 다른 머신 러닝 모델을 사용하여 어떤 "카드"를 표면화 할지 결정합니다.

  • 구글 드라이브에 적용하는 심층 학습 (Deep Learning) 모델 중 하나는 빠른 액세스를 통해 지속적으로 업데이트하고 재 학습하는 것입니다. 이 모델은 Google Workspace에서 신호를 수집하여 다음에 열어볼 파일들을 예측합니다. 예를 들어 Gmail 에 첨부된 파일이나 다가오는 캘린더 미팅은 모두 빠른 액세스 순위를 향상시키는 신호의 예입니다. 물론 문서, 시트 및 슬라이드를 반복적으로 편집합니다. 이 연구 논문에서는 ‘빠른 액세스’ 모델을 보다 자세히 분석하고 다층, 피드 포워드, 신경 네트워크 아키텍처에 대한 정보를 포함하고 있습니다.
  • 협업 패턴을 학습. 드라이브의 '공유 문서 함'에서 파일을 제안하기 위해 Google은 자주 공동 작업 한 사람을 기반으로 추천 검색어를 예측하는 새로운 모델을 출시했습니다. 이 모델은 파일을 공유 한 사람, 문서, 스프레드 시트, 프레젠테이션에서 작업 한 사람, 캘린더에서 만난 사람, Gmail 및 구글 채팅에서 대화하는 사람의 그래프를 사용하여 우선순위 페이지에도 알립니다. . 빠른 액세스의 파일 제안과 달리 공동 작업자 모델은 가장 자주 발생하는 상호 작용에 대한 정보를 제공하여 더욱 강력합니다. 즉, 표시 할 댓글을 결정할 때 우선순위는 #2 대신 #1 공동 작업자의 댓글을 표시하는 것을 선호합니다.
  • 제안 할 파일을 식별 할 수 있도록 중요한 댓글을 등록합니다. Google Workspace 에서는 문서, 시트, 슬라이드 및 Microsoft Office 파일, PDF 및 이미지까지도 댓글을 달 수 있습니다. 댓글 빈도는 중요한 파일인지를 결정하는데 훌륭한 지표가 될 수 있습니다. 가장 가까운 공동 작업자의 의견을 더 높이기 위해 머신 러닝 모델 위에 댓글 모델을 만들었습니다. 이 모델은 또한 우리가 제안한 행동을 알려주며, 좀 더 자세히 설명 할 것입니다.
  • 가까운 미래에 어떤 파일이 중요한지 예측하기 위해 "Workspace (작업공간)"를 정의합니다. 우리는 파일이 작업 집합, 즉 일주일 동안 일을해야하는 파일 집합에 나타날 가능성을 추정하는 심층 학습 모델을 만들었습니다. 이 모델은 "작업 공간"섹션에 유용합니다. 빠른 액세스 모델과 유사하게 작동하지만 최근 편집하지 않은 파일은 걸러냅니다. 또한 드라이브를 한 번만 방문하는 대신 1 주일 동안 수집 한 데이터를 학습합니다.
이러한 여러 머신러닝 모델이 우선순위 카드와 작업공간 간에 분할되어 있으므로 우선순위는 정밀도와 호출 모두를 최적화하여 필요할 때 정확한 파일을 표면화할 수 있습니다.

다음으로, 드라이브가 제안할 작업을 어떻게 알고 있을까요?

우리는 여러분이 필요로하는 파일을 여는 것 이상으로 업무를 이해하고 있습니다. 따라서 드라이브는 관련 파일을 우선적으로 표시 할뿐만 아니라 조치를 취하기 위한 제안을 할 만큼 충분히 스마트합니다. 예를 들어 우선순위 페이지의 댓글에 응답 할 수있는 링크를 제공 할 수 있으며 (문서 자체로 전환 할 필요없이) 또는 향후 회의 전에 검토해야 할 파일을 제안 할 수도 있습니다. 이것은 우리가 위에서 작성하고 설명한 머신러닝 댓글 모델을 통해 모두 가능합니다.
Drive suggested actions.png
문서에 댓글 내용이 너무 많아서 ML 모델을 추적하기가 어려울 것으로 예상할 수 있습니다. 드라이브용이 아닙니다. 클라우드에 있다는 이점은 이러한 찾기 어려운 신호를 집계하여 사내 또는 하이브리드 콘텐츠 관리 시스템에서는 불가능한 유용한 제안을 할 수 있다는 것입니다. 이점은 드라이브 사용자가 내부 분석에서 머신러닝의 도움 덕분에 다른 방법보다 우선순위를 통해 10~15분 더 빨리 댓글에 응답한다는 것입니다.

마지막으로 드라이브는 작업 공간을 지능적으로 어떻게 구성합니까?


위에서 요약 한 드라이브의 머신 러닝 모델을 사용하면 파일에 대한 신속한 액세스가 가능하며 파일의 단서를 바탕으로 제안 사항을 제공 할 수 있습니다.

동료와 작업 세션을 끝냈다 고 가정 해 봅시다. 세션 전체에서 두 사람은 여러 파일을 서로 공유하고 문서, 스프레드 시트, 프레젠테이션을 사용하여 실시간으로 공동 작업을 시작했습니다. 드라이브는 콘텐츠 및 "작업 세트"컴퓨터 학습 모델을 사용하여 이러한 파일을 클러스터링하여 다음과 같이 다섯 개의 파일 모음을 제안합니다.
drive suggested workspace.png
작업 공간에서 작업을 시작하려면 "저장"을 클릭하여 수락해야합니다. 제안 된 작업 영역을 수락하면 이름과 추가 한 다른 파일을 완벽하게 제어 할 수 있습니다.

그러나 아시다시피 프로젝트가 진행되면서 파일도 늘어납니다. 작업 모음을 생성하기 위해 파일 모음을 지능적으로 클러스터링하는 것 외에도 드라이브는 작업 공간에 추가 할 추가 파일을 제안하여 최신 상태로 유지합니다.

소중한 일에 많은 시간을 할애하기.

머신 러닝을 통해 드라이브 사용자는 필요한 파일을 최대 50% 빠르게 찾을 수 있었고, 이는 대신 귀중한 작업을 수행하는 데 더 시간을 할애 할 수 있음을 의미합니다. 또한 IT 관리자는 백엔드에서 컨텐트에 태그 지정, 구성 또는 분류하는 데 소요되는 시간을 줄일 수 있습니다.
참고: 본 내용은 구글 영문 블로그 (by Mike Colagrosso, Software Engineer, Google Drive) 를 번역 및 각색을 한 것입니다.
--------



댓글

이 블로그의 인기 게시물

[Gemini Deep Research 200% 활용법] Gemini 활용 전문가 팁

  Gemini 활용 전문가 팁 Gemini Deep Research 200% 활용법 AI에게 '알아서' 리서치를 시키는 것을 넘어, '최고의 결과물'을 받아내는 2단계 프롬프트 전략 Google Gemini의 'Deep Research' 기능, 정말 강력하죠. 하지만 "어떻게 질문해야 이 기능을 제대로 쓸 수 있을까?" 고민해 본 적 없으신가요? 원하는 답변 대신 너무 광범위하거나 초점이 맞지 않는 결과를 받아보고 실망한 경험도 있으실 겁니다. 오늘은 이 고민을 한 번에 해결해 드릴, 정말 간단하면서도 강력한  ' 2단계 메타 프롬프팅'  전략을 소개합니다. 이 방법은 AI 전문가가 아닌 일반 사용자 누구나 따라 할 수 있으며, 여러분을 단순한 '질문자'에서 AI의 잠재력을 이끌어내는 '프로젝트 감독'으로 만들어 줄 것입니다. 핵심 아이디어는 이렇습니다. "최고의 리서치 프롬프트를 내가 직접 쓰는 대신,  Gemini에게 '최고의 프롬프트를 만들어달라'고 먼저 요청 하는 것" 입니다. AI가 자기 자신을 가장 잘 아는 원리를 이용하는 거죠! 2단계로 완성하는 '전문가급 리서치' 이제부터 딱 두 단계만 따라 해보세요. 놀라운 결과물을 얻게 될 겁니다. 1  프롬프트 '설계도' 요청하기 먼저, 우리가 어떤 정보를 원하는지 Gemini에게 알려주고, 그에 맞는 완벽한 'Deep Research 실행용 프롬프트'를 만들어달라고 요청합니다. 아래 템플릿을 복사해서 여러분의 주제에 맞게 내용을 채워보세요. # 페르소나 당신은 Google Gemini의 'Deep Research' 기능에 대해 완벽하게 이해하고 있는 최고의 프롬프트 엔지니어입니다. 당신의 임무는 사용자의 연구 목표를 기반으로, Deep Research 기능의 성능을 극한까지 끌어낼 수 있는 가장 효과적이고 정교한 ...

[알아두면 쓸모 있는 구글 문서 팁] 문서 공유시- 사용자 이름 대신에 익명의 동물이 표시 되는 이유와 동물 종류

구글 드라이브에는 다른 유사 서비스에서는 제공하지 않는 구글 만의 유니크한 기능들이 있다 구글 문서를  불특정 다수에게 전체 공개로 공유할 수 있습니다. 불특정인이 구글 문서에 접속한 경우 익명의 동물로 표시됩니다.  ' 웹에 공개' 또는 '링크가 있는 사용자' 공유 설정을 선택하면 인식할 수 없는 이름이나 익명의 동물이 표시될 수 있습니다. 파일에서 인식할 수 없는 이름을 볼 수 있는 몇 가지 이유는 다음과 같습니다. 메일링 리스트와 파일을 공유합니다. Google 계정이 없는 사용자와 파일을 공유하며, 그 사용자가 다른 사용자에게 공유 초대를 전달했습니다. 내 파일을 수정할 수 있는 누군가가 파일을 다른 사용자와 공유했습니다. 다른 사용자가 자신의 Google 계정 이름을 변경했습니다. 공유 설정 페이지에서 해당 사용자 이름 위로 마우스를 이동하여 이메일 주소를 확인하세요. 익명의 동물 다른 사용자에게 개별적으로 보기 또는 수정 권한을 부여하거나 메일링 리스트에 속해 있는 경우에만 사용자 이름이 표시됩니다. 파일 권한을 '링크가 있는 사용자'로 설정하면 파일을 보고 있는 사용자의 이름이 표시되지 않습니다. 대신 다른 사용자가 익명으로 라벨이 지정되어 표시되고 각 익명 사용자는 다양한 익명의 동물로 나열됩니다. 파일 권한을 '링크가 있는 사용자'로 설정했지만 특정 사용자와 파일을 공유하는 경우 파일을 공유한 사용자의 이름이 표시됩니다. 그 외 다른 사용자가 파일을 볼 때는 익명으로 나타납니다. 비공개 파일의 익명 동물 파일 권한을 '링크가 있는 사용자'로 설정한 다음 이를 '특정 사용자'로 변경하면 다음과 같은 경우 여러 익명의 동물이 표시될 수 있습니다. 누군가 파일을 여러 번 여는 경우에는 익명의 동물 목록에서 오래되고 연결이 끊긴 세션을 강제 종료하는 데 조금 시간이 걸릴 수 있습니다. 누군가 온...

Claude 4 의 프롬프트 엔지니어링 완벽 가이드 백서 (by Anthropic)

  Claude 4 프롬프트 엔지니어링 완벽 가이드 🚀 인공지능(AI) 시대, AI를 얼마나 잘 활용하느냐가 경쟁력이 되는 요즘! 특히 Claude 4와 같은 고성능 AI 모델의 능력을 200% 끌어내기 위한 핵심 비법, 바로 '프롬프트 엔지니어링'입니다. 이 글에서는 Claude 4를 마치 내 손안의 똑똑한 비서처럼 활용하기 위한 모든 것을 쉽고 자세하게 알려드립니다. 제1장 배경: Claude 4와 대화하는 새로운 방법 인공지능(AI) 기술이 우리 생활 깊숙이 들어오면서, AI를 얼마나 잘 활용하는지가 중요해졌습니다. 마치 스마트폰의 기능을 제대로 알아야 편리하게 사용할 수 있듯이, AI 모델도 그 능력을 최대한 끌어내려면 효과적인 소통 방법이 필요합니다. 여기서 등장하는 것이 바로  프롬프트 엔지니어링 입니다. 프롬프트 엔지니어링이란 무엇일까요?  쉽게 말해, AI에게 우리가 원하는 것을 정확하고 명확하게 전달하여, AI가 똑똑하게 알아듣고 가장 유용한 결과물을 만들어내도록 하는 기술입니다. 마치 숙련된 요리사에게 "맛있는 파스타 만들어주세요"라고 하는 대신, "알리오 올리오 파스타를 만들어주세요. 마늘은 듬뿍 넣고, 페페론치노는 살짝만 넣어 약간 매콤하게, 면은 알덴테로 삶아주세요."라고 구체적으로 주문하는 것과 같습니다. 주문이 상세할수록 우리가 원하는 결과에 가까워지겠죠? 특히 Claude 4와 같은 최신 AI 모델은 이전 모델들보다 훨씬 더 지시를 잘 알아듣고 따릅니다. 그래서 우리가 얼마나 좋은 프롬프트(지시)를 주느냐에 따라 결과물의 수준이 크게 달라집니다. 프롬프트의 품질이 곧 AI 답변의 품질이 되는 셈입니다. Claude 4, 더 똑똑해진 AI 비서 Claude 4 모델(Opus 4, Sonnet 4 포함)은 복잡하고 미묘한 지시 사항도 곧잘 이해하고 수행하는 뛰어난 능력을 갖추고 있습니다. 이는 마치 경험 많은 전문 비서와 일하는 것과 같습니다. 이 비서는 우리가 하는 말을 허투루 듣...

[팁] Google Slide 프리젠테이션시 모든 한글폰트가 '굴림체' 로 바뀌는 현상을 해결한 크롬 확장 프로그램 소개

구글 문서도구인 구글 슬라이드를 이용하여 프리젠테이션을 많이 하는 분들을 위한 희소식 현재 구글 슬라이드에서는 슬라이드 편집시 사용한 고유 한글 폰트들은 프리젠테이션 모드로 전환할 경우는 모두 '굴림체' 로 바뀌어 표시가 되는 불편함이 있었습니다. 예). 슬라이드 편집에서 사용한 '궁서체' 한글 폰트는, 프리젠테이션 모드에서는 '굴림체'로 바뀌어 디스플레이됨 예). 슬라이드 편집 모드 - '궁서체' 폰트 사용 프리젠테이션 모드에서 '굴림체' 로 변경됨    따라서, 이러한 현상을 해결하는 크롬 확장 프로그램이 개발 되었습니다.  크롬 확장 프로그램 명 - ShowAsis 입니다. 크 롬 웹스토어 링크 -  https://goo.gl/PVPkZz 이 확장 프로그램을 사용하여 슬라이드 프리젠테이션을 하면, 편집 모드의 폰트 그대로 프리젠테이션시에도 그대로 한글 폰트로 디스플레이 됩니다. 단, 단점은 슬라이드가 애니메이션 슬라이드가 있는 경우는 애니메이션이 동작하지 않습니다. ----------------------- G Suite/Google Apps 전문 블로그 -  charlychoi.blogspot.kr 도서 '기업과 학교를 위한 구글크롬북'

Deep Research (심층 리서치)용 상세 프롬프트를 자동으로 생성하는 표준 메타 프롬프트 활용법 [팁]

  Deep Research용 상세 프롬프트를 자동으로 생성하는 표준 메타 프롬프트 활용법 생성형 AI를 활용하여 심도 있는 리서치 (Deep Research)를 수행할 때, 상세하고 구조화된 프롬프트를 작성하는 것은 매우 중요합니다. 하지만 매번 이러한 프롬프트를 처음부터 구성하는 것은 번거로울 수 있습니다. 이럴 때 '메타 프롬프트' 를 활용하면, 간단한 정보 입력만으로 AI가 스스로 최적의 Deep Research용 프롬프트를 생성하도록 유도할 수 있습니다. 이번 포스팅에서는 사용자가  'AI Deep Research 효율적 활용을 위한 프롬프트 명령어 표준 템플릿'  문서를  챗GPT, Claude, Gemini 에 업로드 후 Deep Research 명령을 위한 상세한 프롬프트를 생성하도록 지시하는  표준 메타 프롬프트 명령어 를 소개합니다.  이 명령어는  'AI Deep Research 효율적 활용을 위한 프롬프트 명령어 표준 템플릿'  문서를 기반으로 Deep Research 프롬프트 명령어를 생성하는 방법을 안내합니다. ⚙️ 표준 메타 프롬프트: Deep Research용 프롬프트 자동 생성 (명령어 방식) 우선 사용자는  AI Deep Research 효율적 활용을 위한 프롬프트 명령어 표준 템플릿'  문서를 생성형 ai에게 업로드 후 다음 절차에 따라 진행하면 됩니다.  아래는 AI에게 Deep Research용 프롬프트 생성을 요청하기 위한 표준 명령어 형식입니다. 사용자는 아래 '사용자 입력 정보'의  [ ]  대괄호로 표시된 부분을 자신의 연구 내용에 맞게 채워 넣어 생성형 AI에게 전달하면 됩니다. # Deep Research 프롬프트 생성 요청 사용자 입력 정보: * 연구 주제/대상: [여기에 연구 주제 또는 대상을 명확히 입력하세요] * 핵심 질문 (쉼표로 구분): [여기에 가장 궁금한 핵심 질문들을 쉼표로...