기본 콘텐츠로 건너뛰기

이메일 분석의 혁신: 복수의 Gmail 내용을 분석하기[팁] [21-Claude AI 로 블로깅하고 책쓰기]




Gmail은 비즈니스 커뮤니케이션에서 중추적인 역할을 합니다. 특히 영업 부문에서는 고객과의 이메일 소통이 성패를 좌우할 정도로 중요한데, 이런 이메일 데이터를 효과적으로 분석하고 활용함으로써 영업 전략을 수립하고 고객 관리를 개선할 수 있습니다. 이제 Claude와 같은 AI 기술을 통해 대량의 이메일 데이터를 신속하게 분석하는 것이 가능해졌습니다.

이메일 데이터 분석의 첫 단계로, Gmail에서 분석 대상 이메일들을 선택하고 EML 형식으로 일괄 다운로드합니다. Python 프로그래밍을 활용하여 이 EML 파일들에서 텍스트를 추출하고, 이를 하나의 파일로 통합하여 Claude에게 분석을 요청할 수 있습니다. 이 과정을 통해, 영업 담당자는 고객의 피드백에서 제품의 장단점, 경쟁사 대비 우리 제품의 위치, 고객의 의견 및 제안 등 다양한 인사이트를 얻을 수 있습니다.

예를 들어, Claude에게 고객이 가장 자주 언급한 제품의 장단점이 무엇인지, 경쟁사 제품에 대한 언급이 있는지, 판매 및 마케팅 전략에 도움이 될 고객의 의견이나 제안이 있는지 등을 물어볼 수 있습니다. Claude는 이러한 질문에 대해 고객들의 피드백을 기반으로 한 종합적인 분석 결과를 제공할 것입니다. 이를 통해 영업 담당자는 제품 개선, 마케팅 메시지 조정, 고객 세그먼테이션 등에 대한 실행 가능한 전략을 수립할 수 있습니다.

개별 고객과의 커뮤니케이션 히스토리를 분석함으로써, 특정 고객의 선호도와 구매 패턴을 더욱 깊이 이해하고, 고객별 맞춤형 영업 전략을 개발할 수 있습니다. 이 외에도 영업 팀 내에서 성공 사례와 노하우를 공유하고, 영업 프로세스 전반에 대한 개선점을 제안할 수 있는 기회도 마련됩니다.

Claude를 활용한 이메일 분석은 영업 조직이 방대한 데이터에서 핵심 인사이트를 신속하게 도출하고, 데이터 기반의 의사결정을 강화하는 데 큰 도움이 될 것입니다. 그러나 분석 결과를 비판적으로 검토하고 영업 담당자의 경험과 전문성을 바탕으로 보완하는 과정이 필요합니다. 또한, 고객 정보를 다룰 때는 개인정보 보호 등의 컴플라이언스 이슈에 주의해야 합니다.

Claude와 같은 AI 기술은 영업 조직에 새로운 성장 기회를 제공합니다. 고객의 목소리에 귀 기울이고, 개별 고객에 최적화된 가치를 제안함으로써 단기적 성과는 물론 장기적인 고객 관계 구축에도 기여할 것입니다. 따라서 영업 조직의 역량 강화를 위해 Claude와 같은 AI 기술을 적극 활용해 보시기 바랍니다.

다음은 GMail 에서 이메일을 검색 후 일괄로 다운로드 받는 방법과, eml 파일들에서 본문 텍스트만을 추출하여 하나의 파일을 생성하여 Claude 에게 분석 시키는 과정을 소개합니다.

Gmail에서 복수의 이메일을 EML 형식으로 일괄 다운로드하는 방법은 다음과 같습니다.

  1. Gmail에서 다운로드하려는 이메일들을 검색하거나 필터링합니다.
  2. 검색 결과 상단의 체크박스를 클릭하여 전체 이메일을 선택합니다.
  3. 선택한 이메일 중 가장 오래된 이메일까지 스크롤합니다. 그러면 Gmail이 자동으로 나머지 이메일들을 로드합니다.
  4. 검색된 결과를 전체 선택 한 후 마우스 오른쪽 버튼 클릭하여 ‘첨부파일로 전달’을 선택 후 수신자를 본인 이메일로 지정하여 전달합니다.

  1. 5. 수신 된 메일을 오픈 한 후 오른쪽 상단에 첨부파일 다운로드 버튼을 클릭하면 ‘압축’ 언어 선택 옵션이 나오면 ‘영어(미국)’ 을 선택하면 첨부된 (예, 50개) 파일을 한개의 압축 ZIP (예, EML.ZIP) 로 다운로드 받을 수 있습니다.




  1. 6. 다운로드 받은 EML.ZIP 파일을 압축 풀기 하면 EML 폴더에 50개의 각각의 eml 파일들이 존재하게 됩니다.

이렇게 다운로드한 EML 파일들에서 텍스트를 추출하여 하나의 텍스트 파일로 통합하는 방법은 아래 Python 프로그램을 실행하면 EML 폴더의 모든 메시지를 읽어서 하나의 output 텍스트 파일을 만들어줍니다.

 

Python 소스 코드

—---------------------------------------------------

import email

import os

def eml_to_txt(input_folder, output_file):

    """

    input_folder 내의 모든 EML 파일을 읽어서

    그 내용을 output_file에 하나의 TXT 파일로 저장합니다.

    """

    emails = []

    # input_folder 내의 모든 파일을 순회

    for filename in os.listdir(input_folder):

        if filename.endswith('.eml'):

            filepath = os.path.join(input_folder, filename)

            with open(filepath, 'rb') as file:

                msg = email.message_from_binary_file(file)

                # 메일 본문 추출

                if msg.is_multipart():

                    for part in msg.walk():

                        ctype = part.get_content_type()

                        cdispo = str(part.get('Content-Disposition'))

                        # text/plain 파트, 첨부 파일은 제외

                        if ctype == 'text/plain' and 'attachment' not in cdispo:

                            emails.append(part.get_payload(decode=True).decode('utf-8'))  # 본문 추가

                            break

                else:

                    emails.append(msg.get_payload(decode=True).decode('utf-8'))

    # 모든 이메일 본문을 하나의 파일로 저장

    with open(output_file, 'w', encoding='utf-8') as file:

        for email_body in emails:

            file.write(email_body + "\n\n")

# 사용 예

input_folder = '경로를/여기에/입력하세요'  # EML 파일들이 있는 폴더 경로

output_file = 'emails_combined.txt'  # 저장할 TXT 파일 이름

eml_to_txt(input_folder, output_file)

print("EML 파일의 내용이 성공적으로 추출되어 저장되었습니다.")

—------------------------------------------------------------------------------------------------------------------

이 코드에서 input_folder 에는 다운로드 받아서 압축을 푼 EML 폴더 패스를 입력해야 합니다.

예). ‘C:/user/Desktop/EML’  (** 주의 사항 Windowsd에서 파일 패스 표시는 ‘\’ 로 표시 됩니다. Python 코드에서는 반드시 ‘/’ 로 변경해야 오류 없이 수행 됩니다 **)

output_file 에도 마찬가지로 최종 결과를 생성할 폴더명과 파일명 (예. C:/user/Desktop/all_eml.txt’) 으로 수정 해주어야 합니다.

시나리오:

박과장은 영업부에서 신제품 런칭을 준비하고 있습니다. 박과장은 주요 고객사에 신제품 소개 이메일을 보내고, 지난 제품 런칭 때의 고객 반응을 분석하여 이번 런칭 전략에 참고하고자 합니다.


  1. 1. 이메일 작성 박과장은 신제품 소개 이메일 작성을 위해 Claude와 다음과 같이 대화합니다. '역할 부여(Role-playing)' 기법을 활용하여 고객사의 특성에 맞는 이메일 톤앤매너를 설정합니다.

Prompt:

"당신은 A 고객사를 담당하는 영업 직원입니다. A사는 약 1,000명 규모의 중견 제조업체로, 현재 당사의 주력 제품인 X를 사용 중입니다. 이번에 출시되는 신제품 Y의 주요 특장점을 소개하고, X 대비 개선된 점을 강조하는 이메일 초안을 작성해 주세요."

Claude는 A사의 업종과 규모, 기존 제품 사용 현황 등을 고려하여 신제품 소개 이메일의 초안을 생성합니다. 박과장은 초안을 검토하고, '설득력 있는 글쓰기(Persuasive Writing)' 기법을 적용하여 수정을 요청합니다.

Prompt:

"이메일 초안의 서두에 A사와의 오랜 파트너십과 신뢰 관계를 언급하는 문구를 추가해 주세요. 그리고 신제품 Y의 도입으로 A사가 얻을 수 있는 비즈니스 효과를 구체적인 수치와 함께 제시해 주세요."

Claude는 파트너십과 신뢰를 강조하는 인사말을 추가하고, 신제품 도입 시 예상되는 생산성 향상과 비용 절감 효과를 수치화하여 제시합니다. 박과장은 최종 이메일을 확인하고 A사에 발송합니다.

  1. 2. 이메일 분석 신제품 런칭 전략을 수립하기 위해, 박과장은 지난 제품 런칭 당시의 고객 반응을 분석하기로 합니다. 박과장은 당시 주고받은 고객사 이메일 100건을 취합하여 Claude에게 다음과 같이 분석을 요청합니다. '비교 분석(Comparative Analysis)' 기법을 활용합니다.

Claude 에 all_eml.txt 파일을 업로드 한 후

Prompt: 다음 내용을 [요약, 중요사항 정리, 주의 사항, 내가 취해야 할 액션] 단계별 분석해주세요.  

Prompt:

"작년 신제품 런칭 당시 주요 고객사 100곳과 주고받은 이메일 데이터를 분석해 주세요.

  1. 이메일에서 가장 많이 언급된 제품의 장점과 단점은 무엇인가요?
  2. 제품 도입을 긍정적으로 검토한 고객사와 부정적으로 언급한 고객사의 비율은 어떻게 되나요?
  3. 긍정적인 고객사와 부정적인 고객사의 이메일에서 주로 언급된 키워드를 각각 3가지씩 추려주세요."

Claude는 50건의 이메일 데이터를 분석하여, 제품의 주요 장단점, 고객사의 반응 비율, 긍정/부정 키워드 등을 도출합니다. 분석 결과, 제품의 품질과 가격 경쟁력은 높게 평가된 반면, A/S 대응 속도와 사용자 매뉴얼의 부족이 단점으로 지적되었습니다. 또한 고객사의 70%가 제품 도입에 긍정적이었으며, '혁신', '효율', '파트너십'이 긍정 키워드로, '사후 지원', '호환성', '러닝 커브'가 부정 키워드로 나타났습니다.

박과장은 Claude의 분석 결과를 바탕으로 이번 신제품 런칭의 차별화 포인트를 정립합니다. 기존 제품의 장점은 계승하되, 단점으로 지적된 사항은 개선하여 런칭 메시지에 반영하기로 합니다. 특히 신제품의 빠르고 전문적인 A/S 지원 체계와 직관적인 사용자 가이드를 강조하여, 고객사의 우려를 해소하고자 합니다.

박과장의 사례에서 알 수 있듯이, 영업부에서는 Claude를 활용하여 고객사별 특성에 맞는 이메일을 작성하고, 대량의 고객 반응 데이터를 효과적으로 분석할 수 있습니다. '역할 부여', '설득력 있는 글쓰기', '비교 분석' 등의 프롬프트 엔지니어링 기법을 활용하면 보다 타겟팅된 이메일 작성과 인사이트 도출이 가능합니다.

Claude와 영업 담당자의 협업은 고객 커뮤니케이션의 질을 높이고, 데이터 기반의 전략 수립을 가능하게 합니다. 영업부에서 축적된 고객 이메일 데이터는 Claude를 통해 체계적으로 분석되고, 실행 가능한 통찰력을 제공합니다.

기업이 Claude와 같은 AI 기술을 영업부의 이메일 작성과 분석에 활용한다면, 고객 응대의 속도와 정확성을 높이고, 영업 전략의 수립과 실행을 최적화할 수 있을 것입니다. 나아가 고객과의 신뢰 관계를 공고히 하고, 영업 성과를 제고하는 데에도 기여할 수 있을 것으로 기대됩니다.

댓글

이 블로그의 인기 게시물

[알아두면 쓸모 있는 구글 문서 팁] 문서 공유시- 사용자 이름 대신에 익명의 동물이 표시 되는 이유와 동물 종류

구글 드라이브에는 다른 유사 서비스에서는 제공하지 않는 구글 만의 유니크한 기능들이 있다 구글 문서를  불특정 다수에게 전체 공개로 공유할 수 있습니다. 불특정인이 구글 문서에 접속한 경우 익명의 동물로 표시됩니다.  ' 웹에 공개' 또는 '링크가 있는 사용자' 공유 설정을 선택하면 인식할 수 없는 이름이나 익명의 동물이 표시될 수 있습니다. 파일에서 인식할 수 없는 이름을 볼 수 있는 몇 가지 이유는 다음과 같습니다. 메일링 리스트와 파일을 공유합니다. Google 계정이 없는 사용자와 파일을 공유하며, 그 사용자가 다른 사용자에게 공유 초대를 전달했습니다. 내 파일을 수정할 수 있는 누군가가 파일을 다른 사용자와 공유했습니다. 다른 사용자가 자신의 Google 계정 이름을 변경했습니다. 공유 설정 페이지에서 해당 사용자 이름 위로 마우스를 이동하여 이메일 주소를 확인하세요. 익명의 동물 다른 사용자에게 개별적으로 보기 또는 수정 권한을 부여하거나 메일링 리스트에 속해 있는 경우에만 사용자 이름이 표시됩니다. 파일 권한을 '링크가 있는 사용자'로 설정하면 파일을 보고 있는 사용자의 이름이 표시되지 않습니다. 대신 다른 사용자가 익명으로 라벨이 지정되어 표시되고 각 익명 사용자는 다양한 익명의 동물로 나열됩니다. 파일 권한을 '링크가 있는 사용자'로 설정했지만 특정 사용자와 파일을 공유하는 경우 파일을 공유한 사용자의 이름이 표시됩니다. 그 외 다른 사용자가 파일을 볼 때는 익명으로 나타납니다. 비공개 파일의 익명 동물 파일 권한을 '링크가 있는 사용자'로 설정한 다음 이를 '특정 사용자'로 변경하면 다음과 같은 경우 여러 익명의 동물이 표시될 수 있습니다. 누군가 파일을 여러 번 여는 경우에는 익명의 동물 목록에서 오래되고 연결이 끊긴 세션을 강제 종료하는 데 조금 시간이 걸릴 수 있습니다. 누군가 온...

[팁] Google Slide 프리젠테이션시 모든 한글폰트가 '굴림체' 로 바뀌는 현상을 해결한 크롬 확장 프로그램 소개

구글 문서도구인 구글 슬라이드를 이용하여 프리젠테이션을 많이 하는 분들을 위한 희소식 현재 구글 슬라이드에서는 슬라이드 편집시 사용한 고유 한글 폰트들은 프리젠테이션 모드로 전환할 경우는 모두 '굴림체' 로 바뀌어 표시가 되는 불편함이 있었습니다. 예). 슬라이드 편집에서 사용한 '궁서체' 한글 폰트는, 프리젠테이션 모드에서는 '굴림체'로 바뀌어 디스플레이됨 예). 슬라이드 편집 모드 - '궁서체' 폰트 사용 프리젠테이션 모드에서 '굴림체' 로 변경됨    따라서, 이러한 현상을 해결하는 크롬 확장 프로그램이 개발 되었습니다.  크롬 확장 프로그램 명 - ShowAsis 입니다. 크 롬 웹스토어 링크 -  https://goo.gl/PVPkZz 이 확장 프로그램을 사용하여 슬라이드 프리젠테이션을 하면, 편집 모드의 폰트 그대로 프리젠테이션시에도 그대로 한글 폰트로 디스플레이 됩니다. 단, 단점은 슬라이드가 애니메이션 슬라이드가 있는 경우는 애니메이션이 동작하지 않습니다. ----------------------- G Suite/Google Apps 전문 블로그 -  charlychoi.blogspot.kr 도서 '기업과 학교를 위한 구글크롬북'

[ChatGPT 모델 옵션 완벽 분석: 나에게 맞는 최적의 모델은?]

  ChatGPT 모델 옵션 완벽 분석: 나에게 맞는 최적의 모델은? GPT-4, GPT-4o, o3, o4-mini... 헷갈리는 모델들, 속 시원히 정리해 드립니다! ChatGPT를 사용하다 보면 다양한 모델 옵션 때문에 어떤 것을 선택해야 할지 고민될 때가 많습니다. 특히 글쓰기, 창의적인 작업, 일상 업무 등 다양한 용도로 AI를 활용하는 경우, 각 모델의 특성을 이해하고 상황에 맞게 선택하는 것이 중요합니다. 이 글에서는 ChatGPT에서 제공하는 주요 모델들의 의미와 특징, 장단점을 자세히 살펴보고, 여러분의 필요에 맞는 최적의 모델을 선택할 수 있도록 가이드를 제공합니다. 모델별 개요와 특징 ChatGPT에 표시되는 여러 모델은 크게  GPT 계열 (대규모 언어 모델 기반)과  o-시리즈 (강화학습으로 추론 능력을 향상시킨 모델)로 나눌 수 있습니다. 각 모델의 상세 내용을 살펴보겠습니다. 1. GPT-4 (기존 GPT-4 모델) 의미 및 특징 2023년 초 출시된 GPT-4는 GPT-3.5 대비 월등한 성능을 보인 OpenAI의 주력 언어 모델입니다. 뛰어난 텍스트 생성 능력과 이미지 입력 처리(멀티모달) 기능을 처음 도입했으며, 출시 당시 여러 시험에서 상위 10% 성적을 기록할 만큼 높은 지능 수준을 입증했습니다. 복잡한 문제 해결과 자연스러운 창작에 강점이 있었습니다. 장점 높은 출력 품질 : 복잡한 질문에도 깊이 있는 답변 생성 풍부한 표현력 : 창의적인 아이디어 제시에 유리 멀티모달 : 이미지 이해 및 설명 가능 (초기 버전) 단점 느린 응답 속도 높은 비용 및 자원 소모 : 사용량 제한 존재 지원 종료 예정 : 최신 모델로 대체 진행 중 2. GPT-4o (GPT-4 Omni 모델) 의미 및 특징 GPT-4를 개선한  옴니(Omni) 모델 로, 텍스트, 이미지, 오디오 등 모든 유형의 입력/출력을 단일 모델로 처리합니다. 이름의 'o'는 "모든 것(omni)"을 의미하며, GPT-4 대비 성능 향상 및...

Gemini 2.5 Pro, '책 쓰기'의 새로운 지평을 열다: 『AI Deep Research 완전 정복』 탄생 비화

  Gemini 2.5 Pro, '책 쓰기'의 새로운 지평을 열다: 『AI Deep Research 완전 정복』 탄생 비화 AI 시대를 맞아 많은 작가들이 생성형 AI를 글쓰기 파트너로 활용하려 시도합니다. 하지만 솔직히 말해, 짧은 글이나 아이디어 구상을 넘어  '책 한 권' 을 쓰는 여정에서 AI와 성공적으로 협업하기란 쉽지 않은 과제였습니다. 가장 큰 어려움은 바로  '맥락 유지' 였죠. 이야기가 길어질수록 AI가 앞서 나눈 대화나 설정된 스토리를 잊어버리고 엉뚱한 방향으로 가기 일쑤였으니까요. 그런데 이번에 『AI Deep Research 완전 정복』 을 집필하면서, 저는  Gemini 2.5 Pro 와 함께 이 한계를 뛰어넘는 놀라운 경험을 했습니다. 단순히 'AI의 도움을 받았다'는 차원을 넘어,  진정한 '협업'을 통해 책 한 권을 완성 할 수 있었던 그 놀라움과 감탄을 여러분과 나누고 싶습니다. 긴 호흡의 집필, 흔들림 없는 맥락 유지 능력에 감탄하다! 책 쓰기는 마라톤과 같습니다. 수백 페이지에 달하는 긴 여정 동안 일관된 톤과 스토리를 유지하는 것이 핵심이죠. 기존의 생성형 AI들은 이 '긴 호흡'에 약점을 보이는 경우가 많았습니다. 세션이 끊기거나, 대화가 길어지면 이전 맥락을 놓쳐 작가가 끊임없이 방향을 다시 잡아줘야 했죠. 하지만  Gemini 2.5 Pro는 달랐습니다.  책 전체의 구조와 흐름, 등장인물의 설정과 같은 방대한 정보를 놀랍도록  안정적으로 기억하고 유지 했습니다. 마치 지치지 않는 조수처럼, 제가 설정한 큰 그림 안에서 일관성을 유지하며 다음 이야기를 함께 써 내려갔습니다. 덕분에 저는 전체 맥락을 바로잡는 데 에너지를 쏟는 대신, 내용의 깊이와 창의적인 표현에 더 집중할 수 있었습니다. 책 한 권을 쓰는 긴 과정 내내  세션을 유지하며 맥락을 이해하는 능력 , 이것이야말로 Gemini 2.5 Pro가 보여준 첫 번째 놀라움이었습니다....

Claude Max 요금제, 과연 월 $100의 가치가 있을까? Pro 사용자들의 불만과 Research 기능의 실체

  Claude Max 요금제, 과연 월 $100의 가치가 있을까? Pro 사용자들의 불만과 Research 기능의 실체 클로드가 한국 사용자들에게도 Research 서비스를 오픈했군요, Max (월 100달러) 가입을 유도하는 문구가 클로드 사이트 접속시 유난하게 보입니다.  최근 Anthropic의 Claude가 새로운 'Max' 요금제(월 $100)를 출시하며 기존 Pro 사용자들 사이에서 논란이 일고 있습니다. 특히, Max 요금제의 핵심 기능으로 내세우는 'Research' 기능의 실효성과 더불어, 기존 Pro 요금제(월 $20)의 사용 환경이 이전보다 악화되었다는 불만이 터져 나오고 있습니다   ( https://shorturl.at/RAlpf  ).  이는 Anthropic이 수익 극대화를 위해 의도적으로 Pro 사용자들을 Max 요금제로 유도하려는 전략이 아니냐는 의구심마저 낳고 있습니다. 점점 더 팍팍해지는 Claude Pro: 의도된 불편함인가? 가장 큰 불만은 Claude Max 출시 이후 기존 Pro 요금제의 사용 경험이 눈에 띄게 저하되었다는 점입니다. 사용자들은 이전보다 ▲더 잦은 사용량 제한 ▲짧아진 세션 유지 시간 ▲엄격해진 토큰 크기 제한 등을 체감하고 있다고 입을 모읍니다. 과거 월 $20로 누렸던 비교적 자유로운 사용 환경과 성능을 기대하기 어려워졌다는 것입니다.  이는 마치 Max 요금제로의 업그레이드를 강요하는 듯한 인상을 줍니다. Pro 요금제는 '일상적인 생산성'을 위한 옵션으로 남겨두고, 조금 더 깊이 있는 작업이나 활용을 원하는 사용자는 울며 겨자 먹기로 월 $100짜리 Max 요금제를 선택하도록 유도하는 전략으로 비칠 수 있습니다. 월 $100의 가치? Claude Max 'Research' 기능 살펴보기 Claude Max의 핵심 기능인 'Research'는 방대한 정보를 빠르게 분석하고 요약해 주는, 소위 '딥 리서치' 기능입...