기본 콘텐츠로 건너뛰기

생성형 AI의 혁신적 기능! "자연어 질의어로 SQL문을 생성한다고?” (팁)[16-Claude AI 로 블로깅하고 책쓰기]

 생성형 AI의 혁신적 기능! "자연어 질의어로 SQL문을 생성한다고?”

Claude AI나 ChatGPT, Gemini와 같은 생성형 AI가 DB 스키마 정보만으로 자연어 질의와 SQL문을 생성할 수 있다는 것은 매우 흥미롭고 놀라운 기능입니다. 이로 인해 사용자들은 다음과 같은 이점을 얻을 수 있습니다.

1. 사용 편의성 향상

  • 사용자가 SQL 문법을 숙지하지 않아도 자연어로 DB에 질의할 수 있습니다.
  • 예를 들어, "지난 한 달간 가장 많이 팔린 제품 Top 5를 보여줘"라고 묻는 것만으로 AI가 자동으로 해당 SQL문을 생성해 줍니다.

2. 개발 속도 향상

  • 개발자들이 일일이 SQL문을 작성할 필요 없이 자연어 질의만으로 원하는 데이터를 추출할 수 있어 개발 속도가 빨라집니다.
  •  복잡한 JOIN이나 서브쿼리가 필요한 경우에도 AI가 자동으로 처리해 줍니다.

3. 비즈니스 인사이트 발굴

  • 비개발자들도 쉽게 데이터를 탐색하고 분석할 수 있게 되어, 새로운 비즈니스 인사이트를 얻을 수 있습니다.
  • 예컨대 마케터가 "신규 고객 유치율이 가장 높은 마케팅 채널 3개를 알려줘"라고 묻는 것만으로 고객 유치에 효과적인 채널을 파악할 수 있습니다.

이처럼 생성형 AI의 DB 스키마 기반 자연어 질의 및 SQL문 생성 기능은 기업의 데이터 활용을 혁신할 수 있는 엄청난 잠재력을 갖고 있습니다. 개발, 마케팅, 영업, 기획 등 다양한 분야에서 이 기술을 활용한다면 업무 효율성과 의사결정 속도를 크게 높일 수 있을 것입니다. 앞으로 많은 기업들이 이 놀라운 AI 기능을 경쟁적으로 도입하고 활용 사례를 만들어갈 것으로 기대됩니다.

Claude 를 활용한 DB 스키마 정보 이용 예시


샘플 DB 스키마는 엔트로픽 사이트에서 게시된 [1]전형적인 DB 스키마 (Customers, Products, Orders, Orders_Items, Reviews) 를 이용하였습니다.

이 DB 스키마 웹 사이트 전체를 텍스트 복사한 후 이를 구글 Docs에 붙여 넣기 합니다. 이 구글 Docs에 저장된 내용을 PDF 파일로 내보기 한 후 이 PDF 파일을 Claude 에게 (또는 ChatGPT도 가능) 업로드한 후 ‘자연어 10개와 이에 맞는 SQL문을 표로 만들어줘’  라고 명령하면 됩니다. 간단하지요.

(** 이 ERD 그림은 Claude 에게 ‘업로드한 DB 스키마에 해당하는 ERD를 그리는 파이선 코드를 생성 해줘’  한 후 Claude 가 생성한 파이선 코드를 복사하여 ChatGPT에서 실행한 결과입니다. **)

이렇게 하면 Claude는 이 스키마 정보를 바탕으로 다음과 같은 일을 할 수 있습니다:

1. 자연어 질의 이해

  • 사용자의 자연어 질의에 등장하는 키워드를 DB 스키마의 테이블/컬럼명과 매칭합니다.
  • 질의에 사용된 집계함수(SUM, AVG 등), 조건(최근 1년간, Top 10 등)을 파악합니다.

2. SQL문 생성

  • 파악된 테이블/컬럼, 집계함수, 조건을 조합하여 올바른 문법의 SQL문을 자동 생성합니다.
  • 필요한 경우 테이블 간 JOIN이나 서브쿼리도 사용합니다.

3. 데이터 타입 고려

  • 컬럼의 데이터 타입(INT, VARCHAR, DATE 등)을 고려하여 적절한 연산과 비교를 수행합니다.
  •  필요 시 문자열은 따옴표로 감싸고, 날짜는 데이터베이스에 맞는 포맷을 사용합니다.

4. 검증 및 정제

  •  생성된 SQL문이 문법적으로 올바르고 실행 가능한지 검증합니다.
  •   보안상 위험할 수 있는 내용(SQL Injection 등)은 제거합니다.

자연어 질의 20개와 해당 SQL문 예시

Claude Prompt:‘자연어 20개와 이에 맞는 SQL문을 표로 만들어줘’

Claude 답변:

자연어 질의

SQL문

평균 주문금액이 $100 이상인 고객의 이메일 주소를 가져와줘

SELECT email<br>FROM Customers<br>WHERE customer_id IN (<br>  SELECT customer_id<br>  FROM Orders<br>  GROUP BY customer_id<br>  HAVING AVG(total_amount) >= 100<br>);

재고가 가장 적은 제품 카테고리 TOP 3를 보여줘

SELECT category<br>FROM Products<br>GROUP BY category<br>ORDER BY SUM(stock_quantity) ASC<br>LIMIT 3;

직원 급여에서 부서별 최고/최저 급여액을 보여줘

SELECT department,<br>  MAX(salary) AS max_salary,<br>  MIN(salary) AS min_salary<br>FROM Employees<br>GROUP BY department;

작년 동월 대비 매출 증가율이 가장 높은 달은 언제야?

WITH monthly_sales AS (<br>  SELECT DATE_FORMAT(order_date, '%Y-%m') AS month,<br>    SUM(total_amount) AS sales<br>  FROM Orders<br>  GROUP BY DATE_FORMAT(order_date, '%Y-%m')<br>)<br>SELECT month, sales,<br>  LAG(sales) OVER (ORDER BY month) AS prev_sales,<br>  sales / LAG(sales) OVER (ORDER BY month) - 1 AS growth<br>FROM monthly_sales<br>ORDER BY growth DESC<br>LIMIT 1;

신규 가입 고객 비율이 제일 높은 도시 TOP 5는?

SELECT city, <br>  COUNT(CASE WHEN YEAR(NOW()) = YEAR(first_order_date) THEN customer_id END) / COUNT(*) AS new_customer_ratio<br>FROM (<br>  SELECT c.city, c.customer_id, MIN(o.order_date) AS first_order_date<br>  FROM Customers c<br>  JOIN Orders o ON c.customer_id = o.customer_id<br>  GROUP BY c.city, c.customer_id<br>) AS t<br>GROUP BY city<br>ORDER BY new_customer_ratio DESC<br>LIMIT 5;

주문건수가 가장 많은 요일 순위

SELECT DAYNAME(order_date) AS day_of_week, COUNT(*) AS order_count<br>FROM Orders<br>GROUP BY DAYNAME(order_date)<br>ORDER BY order_count DESC;

3월 주문 중 아직 미배송된 주문금액 합계는?

SELECT SUM(total_amount) AS undelivered_total<br>FROM Orders<br>WHERE status != 'Delivered'<br>  AND YEAR(order_date) = YEAR(CURDATE())<br>  AND MONTH(order_date) = 3;

카테고리별로 재고 부족 제품 리스트(재고<10개)를 보여줘

SELECT p.product_name, p.category, p.stock_quantity <br>FROM Products p<br>WHERE p.stock_quantity < 10<br>ORDER BY p.category, p.stock_quantity;

가입 후 아무것도 주문하지 않은 휴면 고객은 몇명이지?

SELECT COUNT(*) AS dormant_customers<br>FROM Customers c<br>LEFT JOIN Orders o ON c.customer_id = o.customer_id<br>WHERE o.order_id IS NULL;

제품별 평균 리뷰 점수와 리뷰 개수를 보여줘

SELECT p.product_name, <br>  AVG(r.rating) AS avg_rating,<br>  COUNT(r.review_id) AS review_count<br>FROM Products p<br>LEFT JOIN Reviews r ON p.product_id = r.product_id<br>GROUP BY p.product_id, p.product_name;

자연어 질의문

SQL문

2022년에 주문한 고객의 이름, 이메일, 주문일자, 총 주문금액을 조회하세요

SELECT c.first_name, c.last_name, c.email, o.order_date, o.total_amount<br>FROM Customers c<br>JOIN Orders o ON c.customer_id = o.customer_id<br>WHERE o.order_date BETWEEN '2022-01-01' AND '2022-12-31';

가장 많이 팔린 상위 5개 제품의 이름, 카테고리, 판매수량을 조회하세요

SELECT p.product_name, p.category, SUM(oi.quantity) AS total_quantity<br>FROM Products p<br>JOIN Order_Items oi ON p.product_id = oi.product_id<br>GROUP BY p.product_id<br>ORDER BY total_quantity DESC<br>LIMIT 5;

평균 평점이 4점 이상인 제품의 이름, 평균 평점, 리뷰 개수를 조회하세요

SELECT p.product_name, AVG(r.rating) AS avg_rating, COUNT(r.review_id) AS review_count<br>FROM Products p<br>JOIN Reviews r ON p.product_id = r.product_id<br>GROUP BY p.product_id<br>HAVING AVG(r.rating) >= 4;

주문 상태가 "Shipped"인 주문의 주문번호, 고객명, 주문일자, 총 주문금액을 조회하세요

SELECT o.order_id, c.first_name, c.last_name, o.order_date, o.total_amount<br>FROM Orders o<br>JOIN Customers c ON o.customer_id = c.customer_id<br>WHERE o.status = 'Shipped';

2023년 상반기(1월6월) 매출 총액과 하반기(7월12월) 매출 총액을 각각 조회하세요

SELECT<br> SUM(CASE WHEN order_date BETWEEN '2023-01-01' AND '2023-06-30' THEN total_amount ELSE 0 END) AS first_half_revenue,<br> SUM(CASE WHEN order_date BETWEEN '2023-07-01' AND '2023-12-31' THEN total_amount ELSE 0 END) AS second_half_revenue<br>FROM Orders<br>WHERE order_date BETWEEN '2023-01-01' AND '2023-12-31';

"Electronics" 카테고리에 속하는 제품들의 평균 가격을 조회하세요

SELECT AVG(price) AS avg_price<br>FROM Products<br>WHERE category = 'Electronics';

2023년 1분기(1월~3월) 주문에서 구매한 제품의 이름, 수량, 총 판매금액을 조회하세요

SELECT p.product_name, SUM(oi.quantity) AS total_quantity, SUM(oi.quantity * oi.price) AS total_sales<br>FROM Products p<br>JOIN Order_Items oi ON p.product_id = oi.product_id<br>JOIN Orders o ON oi.order_id = o.order_id<br>WHERE o.order_date BETWEEN '2023-01-01' AND '2023-03-31'<br>GROUP BY p.product_id;

고객별 총 주문금액이 1000달러 이상인 고객의 ID, 이름, 총 주문금액을 조회하세요

SELECT c.customer_id, c.first_name, c.last_name, SUM(o.total_amount) AS total_order_amount<br>FROM Customers c<br>JOIN Orders o ON c.customer_id = o.customer_id<br>GROUP BY c.customer_id<br>HAVING SUM(o.total_amount) >= 1000;

"New York"에 거주하는 고객 중 2023년에 주문한 고객의 이름, 이메일, 주문일자를 조회하세요

SELECT c.first_name, c.last_name, c.email, o.order_date<br>FROM Customers c<br>JOIN Orders o ON c.customer_id = o.customer_id<br>WHERE c.city = 'New York' AND o.order_date BETWEEN '2023-01-01' AND '2023-12-31';

재고 수량이 10개 미만인 제품의 이름, 카테고리, 가격, 재고수량을 조회하세요

SELECT product_name, category, price, stock_quantity<br>FROM Products<br>WHERE stock_quantity < 10;

결론

Claude와 같은 생성형 AI가 DB 스키마 정보로부터 자연어 질의의 의도를 파악하고 그에 맞는 SQL문을 자동 생성할 수 있게 되면, 기업들은 개발 리소스를 크게 절약하면서도 데이터 활용도를 높일 수 있습니다.

비개발자들도 복잡한 쿼리를 직접 작성할 필요 없이 마치 동료에게 묻듯이 자연어로 데이터를 조회하고 분석할 수 있게 됩니다. 이는 데이터 민주화를 앞당기고, 보다 많은 구성원들이 데이터 기반의 의사결정을 내릴 수 있도록 도울 것입니다.

이 과정은 RAG(Retrieval-Augmented Generation)의 한 부분이 될 수 있습니다. RAG는 방대한 외부 지식을 활용하여 언어 모델의 생성 능력을 높이는 기술입니다. 질의에 필요한 정보를 외부 데이터베이스, 문서 등에서 찾아 언어 모델에 제공함으로써 보다 정확하고 풍부한 답변을 생성할 수 있게 됩니다.

DB 스키마와 데이터를 지식 소스로 활용한다면, 사용자의 질의에 대해 실제 DB에서 데이터를 검색하고 이를 바탕으로 SQL문과 답변을 생성하는 RAG 시스템을 구현할 수 있을 것입니다. 이는 단순히 SQL문을 생성하는 것을 넘어, 실제 DB 데이터와 연계된 보다 강력한 질의응답 시스템으로 발전할 수 있음을 시사합니다.

앞으로 AI 기술이 고도화되고 다양한 외부 지식과 결합되면서, 사용자의 복잡한 요구사항도 만족시킬 수 있는 종합적인 데이터 분석 및 질의응답 솔루션이 등장할 것으로 기대됩니다. 기업들은 RAG와 같은 첨단 AI 기술을 적극 도입하여 데이터 활용 경쟁력을 한층 더 높여나가야 할 것입니다.


댓글

이 블로그의 인기 게시물

[Gemini Deep Research 200% 활용법] Gemini 활용 전문가 팁

  Gemini 활용 전문가 팁 Gemini Deep Research 200% 활용법 AI에게 '알아서' 리서치를 시키는 것을 넘어, '최고의 결과물'을 받아내는 2단계 프롬프트 전략 Google Gemini의 'Deep Research' 기능, 정말 강력하죠. 하지만 "어떻게 질문해야 이 기능을 제대로 쓸 수 있을까?" 고민해 본 적 없으신가요? 원하는 답변 대신 너무 광범위하거나 초점이 맞지 않는 결과를 받아보고 실망한 경험도 있으실 겁니다. 오늘은 이 고민을 한 번에 해결해 드릴, 정말 간단하면서도 강력한  ' 2단계 메타 프롬프팅'  전략을 소개합니다. 이 방법은 AI 전문가가 아닌 일반 사용자 누구나 따라 할 수 있으며, 여러분을 단순한 '질문자'에서 AI의 잠재력을 이끌어내는 '프로젝트 감독'으로 만들어 줄 것입니다. 핵심 아이디어는 이렇습니다. "최고의 리서치 프롬프트를 내가 직접 쓰는 대신,  Gemini에게 '최고의 프롬프트를 만들어달라'고 먼저 요청 하는 것" 입니다. AI가 자기 자신을 가장 잘 아는 원리를 이용하는 거죠! 2단계로 완성하는 '전문가급 리서치' 이제부터 딱 두 단계만 따라 해보세요. 놀라운 결과물을 얻게 될 겁니다. 1  프롬프트 '설계도' 요청하기 먼저, 우리가 어떤 정보를 원하는지 Gemini에게 알려주고, 그에 맞는 완벽한 'Deep Research 실행용 프롬프트'를 만들어달라고 요청합니다. 아래 템플릿을 복사해서 여러분의 주제에 맞게 내용을 채워보세요. # 페르소나 당신은 Google Gemini의 'Deep Research' 기능에 대해 완벽하게 이해하고 있는 최고의 프롬프트 엔지니어입니다. 당신의 임무는 사용자의 연구 목표를 기반으로, Deep Research 기능의 성능을 극한까지 끌어낼 수 있는 가장 효과적이고 정교한 ...

[알아두면 쓸모 있는 구글 문서 팁] 문서 공유시- 사용자 이름 대신에 익명의 동물이 표시 되는 이유와 동물 종류

구글 드라이브에는 다른 유사 서비스에서는 제공하지 않는 구글 만의 유니크한 기능들이 있다 구글 문서를  불특정 다수에게 전체 공개로 공유할 수 있습니다. 불특정인이 구글 문서에 접속한 경우 익명의 동물로 표시됩니다.  ' 웹에 공개' 또는 '링크가 있는 사용자' 공유 설정을 선택하면 인식할 수 없는 이름이나 익명의 동물이 표시될 수 있습니다. 파일에서 인식할 수 없는 이름을 볼 수 있는 몇 가지 이유는 다음과 같습니다. 메일링 리스트와 파일을 공유합니다. Google 계정이 없는 사용자와 파일을 공유하며, 그 사용자가 다른 사용자에게 공유 초대를 전달했습니다. 내 파일을 수정할 수 있는 누군가가 파일을 다른 사용자와 공유했습니다. 다른 사용자가 자신의 Google 계정 이름을 변경했습니다. 공유 설정 페이지에서 해당 사용자 이름 위로 마우스를 이동하여 이메일 주소를 확인하세요. 익명의 동물 다른 사용자에게 개별적으로 보기 또는 수정 권한을 부여하거나 메일링 리스트에 속해 있는 경우에만 사용자 이름이 표시됩니다. 파일 권한을 '링크가 있는 사용자'로 설정하면 파일을 보고 있는 사용자의 이름이 표시되지 않습니다. 대신 다른 사용자가 익명으로 라벨이 지정되어 표시되고 각 익명 사용자는 다양한 익명의 동물로 나열됩니다. 파일 권한을 '링크가 있는 사용자'로 설정했지만 특정 사용자와 파일을 공유하는 경우 파일을 공유한 사용자의 이름이 표시됩니다. 그 외 다른 사용자가 파일을 볼 때는 익명으로 나타납니다. 비공개 파일의 익명 동물 파일 권한을 '링크가 있는 사용자'로 설정한 다음 이를 '특정 사용자'로 변경하면 다음과 같은 경우 여러 익명의 동물이 표시될 수 있습니다. 누군가 파일을 여러 번 여는 경우에는 익명의 동물 목록에서 오래되고 연결이 끊긴 세션을 강제 종료하는 데 조금 시간이 걸릴 수 있습니다. 누군가 온...

[팁] Google Slide 프리젠테이션시 모든 한글폰트가 '굴림체' 로 바뀌는 현상을 해결한 크롬 확장 프로그램 소개

구글 문서도구인 구글 슬라이드를 이용하여 프리젠테이션을 많이 하는 분들을 위한 희소식 현재 구글 슬라이드에서는 슬라이드 편집시 사용한 고유 한글 폰트들은 프리젠테이션 모드로 전환할 경우는 모두 '굴림체' 로 바뀌어 표시가 되는 불편함이 있었습니다. 예). 슬라이드 편집에서 사용한 '궁서체' 한글 폰트는, 프리젠테이션 모드에서는 '굴림체'로 바뀌어 디스플레이됨 예). 슬라이드 편집 모드 - '궁서체' 폰트 사용 프리젠테이션 모드에서 '굴림체' 로 변경됨    따라서, 이러한 현상을 해결하는 크롬 확장 프로그램이 개발 되었습니다.  크롬 확장 프로그램 명 - ShowAsis 입니다. 크 롬 웹스토어 링크 -  https://goo.gl/PVPkZz 이 확장 프로그램을 사용하여 슬라이드 프리젠테이션을 하면, 편집 모드의 폰트 그대로 프리젠테이션시에도 그대로 한글 폰트로 디스플레이 됩니다. 단, 단점은 슬라이드가 애니메이션 슬라이드가 있는 경우는 애니메이션이 동작하지 않습니다. ----------------------- G Suite/Google Apps 전문 블로그 -  charlychoi.blogspot.kr 도서 '기업과 학교를 위한 구글크롬북'

Claude 4 의 프롬프트 엔지니어링 완벽 가이드 백서 (by Anthropic)

  Claude 4 프롬프트 엔지니어링 완벽 가이드 🚀 인공지능(AI) 시대, AI를 얼마나 잘 활용하느냐가 경쟁력이 되는 요즘! 특히 Claude 4와 같은 고성능 AI 모델의 능력을 200% 끌어내기 위한 핵심 비법, 바로 '프롬프트 엔지니어링'입니다. 이 글에서는 Claude 4를 마치 내 손안의 똑똑한 비서처럼 활용하기 위한 모든 것을 쉽고 자세하게 알려드립니다. 제1장 배경: Claude 4와 대화하는 새로운 방법 인공지능(AI) 기술이 우리 생활 깊숙이 들어오면서, AI를 얼마나 잘 활용하는지가 중요해졌습니다. 마치 스마트폰의 기능을 제대로 알아야 편리하게 사용할 수 있듯이, AI 모델도 그 능력을 최대한 끌어내려면 효과적인 소통 방법이 필요합니다. 여기서 등장하는 것이 바로  프롬프트 엔지니어링 입니다. 프롬프트 엔지니어링이란 무엇일까요?  쉽게 말해, AI에게 우리가 원하는 것을 정확하고 명확하게 전달하여, AI가 똑똑하게 알아듣고 가장 유용한 결과물을 만들어내도록 하는 기술입니다. 마치 숙련된 요리사에게 "맛있는 파스타 만들어주세요"라고 하는 대신, "알리오 올리오 파스타를 만들어주세요. 마늘은 듬뿍 넣고, 페페론치노는 살짝만 넣어 약간 매콤하게, 면은 알덴테로 삶아주세요."라고 구체적으로 주문하는 것과 같습니다. 주문이 상세할수록 우리가 원하는 결과에 가까워지겠죠? 특히 Claude 4와 같은 최신 AI 모델은 이전 모델들보다 훨씬 더 지시를 잘 알아듣고 따릅니다. 그래서 우리가 얼마나 좋은 프롬프트(지시)를 주느냐에 따라 결과물의 수준이 크게 달라집니다. 프롬프트의 품질이 곧 AI 답변의 품질이 되는 셈입니다. Claude 4, 더 똑똑해진 AI 비서 Claude 4 모델(Opus 4, Sonnet 4 포함)은 복잡하고 미묘한 지시 사항도 곧잘 이해하고 수행하는 뛰어난 능력을 갖추고 있습니다. 이는 마치 경험 많은 전문 비서와 일하는 것과 같습니다. 이 비서는 우리가 하는 말을 허투루 듣...

Deep Research (심층 리서치)용 상세 프롬프트를 자동으로 생성하는 표준 메타 프롬프트 활용법 [팁]

  Deep Research용 상세 프롬프트를 자동으로 생성하는 표준 메타 프롬프트 활용법 생성형 AI를 활용하여 심도 있는 리서치 (Deep Research)를 수행할 때, 상세하고 구조화된 프롬프트를 작성하는 것은 매우 중요합니다. 하지만 매번 이러한 프롬프트를 처음부터 구성하는 것은 번거로울 수 있습니다. 이럴 때 '메타 프롬프트' 를 활용하면, 간단한 정보 입력만으로 AI가 스스로 최적의 Deep Research용 프롬프트를 생성하도록 유도할 수 있습니다. 이번 포스팅에서는 사용자가  'AI Deep Research 효율적 활용을 위한 프롬프트 명령어 표준 템플릿'  문서를  챗GPT, Claude, Gemini 에 업로드 후 Deep Research 명령을 위한 상세한 프롬프트를 생성하도록 지시하는  표준 메타 프롬프트 명령어 를 소개합니다.  이 명령어는  'AI Deep Research 효율적 활용을 위한 프롬프트 명령어 표준 템플릿'  문서를 기반으로 Deep Research 프롬프트 명령어를 생성하는 방법을 안내합니다. ⚙️ 표준 메타 프롬프트: Deep Research용 프롬프트 자동 생성 (명령어 방식) 우선 사용자는  AI Deep Research 효율적 활용을 위한 프롬프트 명령어 표준 템플릿'  문서를 생성형 ai에게 업로드 후 다음 절차에 따라 진행하면 됩니다.  아래는 AI에게 Deep Research용 프롬프트 생성을 요청하기 위한 표준 명령어 형식입니다. 사용자는 아래 '사용자 입력 정보'의  [ ]  대괄호로 표시된 부분을 자신의 연구 내용에 맞게 채워 넣어 생성형 AI에게 전달하면 됩니다. # Deep Research 프롬프트 생성 요청 사용자 입력 정보: * 연구 주제/대상: [여기에 연구 주제 또는 대상을 명확히 입력하세요] * 핵심 질문 (쉼표로 구분): [여기에 가장 궁금한 핵심 질문들을 쉼표로...